Advanced Mathematics for Engineers

Wolfgang Ertel

translated by Elias Drotleff and Richard Cubek

September 30, 2016
Preface

Since 2008 this mathematics lecture is offered for the master courses computer science (IN), mechatronics (MM) and electrical engineering (EEM). After a repetition of basic linear algebra, computer algebra, calculus and statistics, we will treat numerical calculus, statistics, function approximation, numerical integration and numerical solution of differential equations, which are the most important basic mathematics topics for engineers. We also provide a brief introduction to Matlab, Octave, Python and Gnuplot which are powerful tools for the Exercises.

We are looking forward to work with motivated and eager students who want to climb up the steep, high and fascinating mountain of engineering mathematics together with us. I assure you that we will do our best to guide you through the sometimes wild, rough and challenging world of applied mathematics. I also assure you that all your efforts and your endurance in working on the exercises during nights and weekends eventually will pay off as good marks and most importantly as a lot of fun.

Chapters 1, 2, 3 and about half of chapter 4 (up to section 4.6) provide a repetition of mathematics that you should already know from your undergraduate math courses. These topics are fundamental requirements for understanding the remaining chapters.

Even though we repeat some undergraduate linear algebra and calculus, the failure rate in the exams is very high, in particular among the foreign students. As a consequence, we strongly recommend all our students to repeat undergraduate linear algebra such as operation on matrices like solution of linear systems, singularity of matrices, inversion, eigenvalue problems, row-, column- and nullspaces. You also should bring decent knowledge of one-dimensional and multidimensional calculus, e.g. differentiation and integration in one and many variables, convergence of sequences and series and finding extrema of multivariate functions with constraints. And basic statistics is also required. To summarize: If you are not able to solve problems (not only know the terms) in these fields before you start the course, you have very little chances to successfully finish this course.

Exercises

Some of the exercises are marked with stars with the following meaning: Exercises with no star can be solved in a more or less straight forward, often schematic way, by all those who bring the required undergraduate knowledge and have understood the respective chapter of the lecture. Exercises of this class may well take some time to be solved. These no-star-exercises Exercises can be problems in an examination. Exercises with one star (•) are not so easy. Here you may need to find an idea and/or need to work longer or harder, but again, for those who have the understanding of the respective subject, they are solvable. They may be part of an examination, maybe together with a hint. Exercises with two stars (••) are challenges for motivated students. Working on such a problem is an excellent training. If after some time of working, searching, playing and discussion with your training partner(s) you are not successful, don’t give up. There is the internet. Maybe you find a hint on the web or even the complete solution. Then your task is to (only) understand the solution. These ••-exercises are too hard for the examination, but they definitely help you getting into good shape for the examination.

Wolfgang Ertel
History of the Course

1995/96: The first version of this script covering numerics was created for computer science students only. It covered the basics of numerical calculus, systems of linear equations, various interpolation methods, function approximation, and the solution of nonlinear equations.

1998: A chapter about Statistics was added, because of the weak coverage at our University till then.

1999/2000: Layout and structure were improved and some mistakes removed.

2002: In the context of changes in the curriculum of Applied Computer science, statistics was shifted, because of the general relevance for all students, into the lecture Mathematics 2. Instead of Statistics, subjects specifically relevant for computer scientists should be included. The generation and verification of random numbers is such a topic.

2008: With the switch to the Bachelor/Master system, the lecture is offered to Master (Computer Science) students. Therefore the section about random numbers was extended.

2010/11: Master Machatronics and Electrical Engineering students also attend this lecture. Thus, it was been completely revised, restructured and some important sections added such as radial basis functions and statistics and probability. These changes become necessary with the step from Diploma to Master. I want to thank Markus Schneider and Haitham Bou Ammar who helped me improve the lecture.

The precourse was integrated into the lecture in order to give the students more time to work on the exercises. Thus, the volume of the lecture grew from 6 SWS to 8 SWS and was split into two lectures of 4 SWS each.

2012/13: We switched back to a one semester schedule with 6 hours per week for computer science and mechatronics students who receive the full edition of the script. Electrical engineering students will go for four hours, covering chapters one to six only in the reduced edition script.

2015/16: We made some corrections, removed some exercises and joined the two function approximation chapters into one.

2016/17: We finally merge the lectures for all three courses. The master courses IN, MM and EEM now have the same lecture. At the same time we start with a laboratory in addition to lecture and exercises. In this lab you learn scientific programming with Matlab or Python for solving mathematical problems. For the EEM students this lab is compulsory and for the others it is optional. The lecture, exercises and laboratory together yield a module of 10 ECTS credits.
Contents

1 Linear Algebra 1
 1.1 Video Lectures 1
 1.2 Exercises 1

2 Computer Algebra 8
 2.1 Symbol Processing on the Computer 9
 2.2 Gnuplot, a professional Plotting Software 10
 2.3 GNU Octave 10
 2.4 Exercises 15

3 Calculus – Selected Topics 17
 3.1 Sequences and Convergence 17
 3.2 Series 20
 3.3 Continuity 23
 3.4 Taylor–Series 28
 3.5 Differential Calculus in many Variables 32
 3.6 Exercises 51

4 Statistics and Probability 56
 4.1 Recording Measurements in Samples 56
 4.2 Statistical Parameters 58
 4.3 Multidimensional Samples 59
 4.4 Probability Theory 62
 4.5 Discrete Distributions 66
 4.6 Continuous Distributions 68
 4.7 Multidimensional Normal Distribution 73
 4.8 Random Numbers 76
 4.9 Principal Component Analysis (PCA) 81
 4.10 Estimators 88
 4.11 Exercises 91

5 Numerical Mathematics 97
 5.1 Arithmetics on the Computer 97
 5.2 Numerics of Linear Systems of Equations 101
 5.3 Roots of Nonlinear Equations 109
 5.4 Exercises 119

6 Function Approximation 122
 6.1 Polynomial Interpolation 122
 6.2 Spline Interpolation 127
 6.3 Method of Least Squares and Pseudoinverse 133
 6.4 Linear Regression – Summary 145
6.5 Singular Value Decomposition (SVD) ... 146
6.6 Outlook on Nonlinear Regression .. 150
6.7 Exercises ... 151

7 Numerical Integration and Solution of Ordinary Differential Equations 155
 7.1 Numerical Integration ... 155
 7.2 Numerical Differentiation .. 159
 7.3 Numerical Solution of Ordinary Differential Equations 162
 7.4 Linear Differential Equations with Constant Coefficients 168
 7.5 Exercises ... 176

Bibliography .. 181
1 Linear Algebra

1.1 Video Lectures

We use the excellent video lectures from Gilbert Strang, the author of [Str03], available from: http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010. In particular we recommend the study of the following lectures:

<table>
<thead>
<tr>
<th>Lec #</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The geometry of linear equations (lecture 01)</td>
</tr>
<tr>
<td>2</td>
<td>Elimination with matrices (lecture 02)</td>
</tr>
<tr>
<td>3</td>
<td>Multiplication and inverse matrices (lecture 03)</td>
</tr>
<tr>
<td>4</td>
<td>Transposes, Permutations, Spaces \mathbb{R}^n (lecture 05)</td>
</tr>
<tr>
<td>5</td>
<td>Column Space and Nullspace (lecture 06)</td>
</tr>
<tr>
<td>6</td>
<td>Solving $Ax = 0$: Pivot Variables, Special Solutions (lecture 07)</td>
</tr>
<tr>
<td>7</td>
<td>Solving $Ax = b$: Row Reduced Form R (lecture 08)</td>
</tr>
<tr>
<td>8</td>
<td>Independence, Basis, and Dimension (lecture 09)</td>
</tr>
<tr>
<td>9</td>
<td>Properties of Determinants (lecture 18)</td>
</tr>
<tr>
<td>10</td>
<td>Determinant Formulas and Cofactors (lecture 19)</td>
</tr>
<tr>
<td>11</td>
<td>Cramer’s rule, inverse matrix, and volume (lecture 20, only ”inverse matrix”)</td>
</tr>
<tr>
<td>12</td>
<td>Eigenvalues and Eigenvectors (lecture 21)</td>
</tr>
<tr>
<td>13</td>
<td>Symmetric Matrices and Positive Definiteness (lecture 25)</td>
</tr>
<tr>
<td>14</td>
<td>Linear Transformations and Their Matrices (lecture 30)</td>
</tr>
</tbody>
</table>

1.2 Exercises

Exercise 1.1 Solve the nonsingular triangular system

\[u + v + w = b_1 \]
\[v + w = b_2 \]
\[w = b_3 \]

Show that your solution gives a combination of the columns that equals the column on the right.

Exercise 1.2 Explain why the system

\[u + v + w = 2 \]
\[u + 2v + 3w = 1 \]
\[v + 2w = 0 \]

is singular, by showing that the three equations are not linearly independent. What value should replace the last zero on the right side, to allow the equations to have solutions, and what is one of the solutions?
Inverses and Transposes

Exercise 1.3 Which properties of a matrix A are preserved by its inverse (assuming A^{-1} exists)?

1. A is triangular
2. A is symmetric
3. A is tridiagonal
4. all entries are integers
5. all entries are rationals

Exercise 1.4

a) How many entries can be chosen independently, in a symmetric matrix of order n?

b) How many entries can be chosen independently, in a skew-symmetric matrix of order n?

Permutations and Elimination

Exercise 1.5

a) Find a square 3×3 matrix P, that multiplied from left to any $3 \times m$ matrix A exchanges rows 1 and 2.

b) Find a square $n \times n$ matrix P, that multiplied from left to any $n \times m$ matrix A exchanges rows i and j.

Exercise 1.6 A permutation is a bijective mapping from a finite set onto itself. Applied to vectors of length n, a permutation arbitrarily changes the order of the vector components. The word “ANGSTBUDE” is a permutation of “BUNDESTAG”. An example of a permutation on vectors of length 5 can be described by

$$(3, 2, 1, 5, 4).$$

This means component 3 moves to position 1, component 2 stays where it was, component 1 moves to position 3, component 5 moves to position 4 and component 4 moves to position 5.

a) Give a 5×5 matrix P that implements this permutation.

b) How can we come from a permutation matrix to its inverse?

Exercise 1.7

a) Find a 3×3 matrix E, that multiplied from left to any $3 \times m$ matrix A adds 5 times row 2 to row 1.

b) Describe a $n \times n$ matrix E, that multiplied from left to any $n \times m$ matrix A adds k times row i to row j.

c) Based on the above answers, prove that the elimination process of a matrix can be realized by successive multiplication with matrices from left.

Column Spaces and Null Spaces

Exercise 1.8 Which of the following subsets of \mathbb{R}^3 are actually subspaces?
1.2 Exercises

a) The plane of vectors with first component \(b_1 = 0 \).
b) The plane of vectors \(b \) with \(b_1 = 1 \).
c) The vectors \(b \) with \(b_1 b_2 = 0 \) (this is the union of two subspaces, the plane \(b_1 = 0 \) and the plane \(b_2 = 0 \)).
d) The solitary vector \(b = (0, 0, 0) \).
e) All combinations of two given vectors \(x = (1, 1, 0) \) and \(y = (2, 0, 1) \).
f) The vectors \((b_1, b_2, b_3) \) that satisfy \(b_3 - b_2 + 3b_1 = 0 \).

Exercise 1.9 Let \(P \) be the plane in 3-space with equation \(x + 2y + z = 6 \). What is the equation of the plane \(P_0 \) through the origin parallel to \(P \)? Are \(P \) and \(P_0 \) subspaces of \(\mathbb{R}^3 \)?

Exercise 1.10 Which descriptions are correct? The solutions \(x \) of

\[
Ax = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

form a plane, line, point, subspace, nullspace of \(A \), column space of \(A \).

Ax = 0 and Pivot Variables

Exercise 1.11 For the matrix

\[
A = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix}
\]

determine the echelon form \(U \), the pivot variables, the free variables, and the general solution to \(Ax = 0 \). Then apply elimination to \(Ax = b \), with components \(b_1 \) and \(b_2 \) on the right side; find the conditions for \(Ax = b \) to be consistent (that is, to have a solution) and find the general solution as the sum of particular solution and a solution to \(Ax = 0 \). What is the rank of \(A \)?

Exercise 1.12 Write the general solution to

\[
\begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}
\]

as the sum of a particular solution to \(Ax = b \) and the general solution to \(Ax = 0 \).

Exercise 1.13 Find the value of \(c \) which makes it possible to solve

\[
\begin{align*}
u + v + 2w &= 2 \\
2u + 3v - w &= 5 \\
3u + 4v + w &= c
\end{align*}
\]

Solving \(Ax = b \)

* Exercise 1.14 Is it true that if \(v_1, v_2, v_3 \) are linearly independent, that also the vectors \(w_1 = v_1 + v_2, w_2 = v_1 + v_3, w_3 = v_2 + v_3 \) are linearly independent? (Hint: Assume some
combination \(c_1w_1 + c_2w_2 + c_3w_3 = 0 \), and find which \(c_i \) are possible.)

Exercise 1.15 Find a counterexample to the following statement: If \(v_1, v_2, v_3, v_4 \) is a basis for the vector space \(\mathbb{R}^4 \), and if \(W \) is a subspace, then some subset of the \(v \)'s is a basis for \(W \).

Exercise 1.16 Suppose \(V \) is known to have dimension \(k \). Prove that

a) any \(k \) independent vectors in \(V \) form a basis;

b) any \(k \) vectors that span \(V \) form a basis.

In other words, if the number of vectors is known to be right, either of the two properties of a basis implies the other.

Exercise 1.17 Prove that if \(V \) and \(W \) are three-dimensional subspaces of \(\mathbb{R}^5 \), then \(V \) and \(W \) must have a nonzero vector in common. Hint: Start with bases of the two subspaces, making six vectors in all.

The Four Fundamental Subspaces

Exercise 1.18 Find the dimension and construct a basis for the four subspaces associated with each of the matrices

\[
A = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]

Exercise 1.19 If the product of two matrices is the zero matrix, \(AB = 0 \), show that the column space of \(B \) is contained in the nullspace of \(A \). (Also the row space of \(A \) is the left nullspace of \(B \), since each row of \(A \) multiplies \(B \) to give a zero row.)

Exercise 1.20 Explain why \(Ax = b \) is solvable if and only if rank \(A = \) rank \(A' \), where \(A' \) is formed from \(A \) by adding \(b \) as an extra column. Hint: The rank is the dimension of the column space; when does adding an extra column leave the dimension unchanged?

Exercise 1.21 Suppose \(A \) is an \(m \) by \(n \) matrix of rank \(r \). Under what conditions on those numbers does

a) \(A \) have a two-sided inverse: \(AA^{-1} = A^{-1}A = I \)?

b) \(Ax = b \) have infinitely many solutions for every \(b \)?

Exercise 1.22 If \(Ax = 0 \) has a nonzero solution, show that \(A^T y = f \) fails to be solvable for some right sides \(f \). Construct an example of \(A \) and \(f \).

Orthogonality

Exercise 1.23 In \(\mathbb{R}^3 \) find all vectors that are orthogonal to \((1, 1, 1)\) and \((1, -1, 0)\). Produce from these individual vectors and their combination, a mutually orthogonal system of unit vectors (an orthogonal system) in \(\mathbb{R}^3 \).

Exercise 1.24 Show that \(x - y \) is orthogonal to \(x + y \) if and only if \(\|x\| = \|y\| \).

Exercise 1.25 Let \(P \) be the plane (not a subspace) in 3-space with equation \(x + 2y - z = 6 \). Find the equation of a plane \(P' \) parallel to \(P \) but going through the origin. Find also a
1.2 Exercises

vector perpendicular to those planes. What matrix has the plane \(P' \) as its nullspace, and what matrix has \(P' \) as its row space?

Projections

Exercise 1.26 Suppose \(A \) is a \(4 \times 3 \) matrix formed from the \(4 \times 4 \) identity matrix with its last column removed. Project \(b = (1, 2, 3, 4) \) onto the column space of \(A \). What shape is the projection matrix \(P \) and what is \(P' \)?

Determinants

Exercise 1.27 How are \(\det(2A) \), \(\det(-A) \), and \(\det(A^2) \) related to \(\det A \), when \(A \) is \(n \) by \(n \)?

Exercise 1.28 Find the determinants of:

a) the rank one matrix

\[
A = \begin{bmatrix}
1 \\
4 \\
2 \\
\end{bmatrix} \begin{bmatrix}
2 & -1 & 2 \\
\end{bmatrix}
\]

c) the lower triangular matrix \(U^T \);

d) the inverse matrix \(U^{-1} \);

e) the “reverse-triangular” matrix that results from row exchanges,

b) the upper triangular matrix

\[
U = \begin{bmatrix}
4 & 4 & 8 & 8 \\
0 & 1 & 2 & 2 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 2 \\
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 6 \\
0 & 1 & 2 & 2 \\
4 & 4 & 8 & 8 \\
\end{bmatrix}
\]

Exercise 1.29 If every row of \(A \) adds to zero, prove that \(\det A = 0 \). If every row adds to 1, prove that \(\det(A - I) = 0 \). Show by example that this does not imply \(\det A = 1 \).

Properties of Determinants

Exercise 1.30 Suppose \(A_n \) is the \(n \) by \(n \) tridiagonal matrix with 1’s everywhere on the three diagonals:

\[
A_1 = [1], \quad A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \ldots
\]

Let \(D_n \) be the determinant of \(A_n \) that we want to find.

a) Expand in cofactors along the first row of \(A_n \) to show that \(D_n = D_{n-1} - D_{n-2} \).

b) Starting from \(D_1 = 1 \) and \(D_2 = 0 \) find \(D_3, D_4, \ldots, D_8 \). By noticing how these numbers cycle around (with what period?), find \(D_{1000} \).
Exercise 1.31 Explain why a 5 by 5 matrix with a 3 by 3 zero submatrix is sure to be singular (regardless of the 16 nonzeros marked by x’s, which may be same or different):

the determinant of \(A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix} \) is zero.

Exercise 1.32 If \(A \) is \(m \) by \(n \) and \(B \) is \(n \) by \(m \), show that

\[
\det \left[\begin{array}{cc} 0 & A \\ -B & I \end{array} \right] = \det AB. \quad \text{(Hint: Postmultiply by} \begin{bmatrix} I \\ B \\ I \end{bmatrix}. \)
\]

Do an example with \(m < n \) and an example with \(m > n \). Why does the second example have \(\det AB = 0 \)?

Eigenvalues and Eigenvectors

Exercise 1.33 Suppose that \(\lambda \) is an eigenvalue of \(A \), and \(x \) is its eigenvector: \(Ax = \lambda x \).

a) Show that this same \(x \) is an eigenvector of \(B = A - 7I \), and find the eigenvalue.

b) Assuming \(\lambda \neq 0 \), show that \(x \) is also an eigenvector of \(A^{-1} \) and find the eigenvalue.

Exercise 1.34 Show that the determinant equals the product of the eigenvalues by imagining that the characteristic polynomial is factored into

\[
\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)
\]

and making a clever choice of \(\lambda \).

Exercise 1.35 Show that the trace of a square matrix equals the sum of its eigenvalues. Do this in two steps. First, find the coefficient of \((-\lambda)^{n-1} \) on the right side of equation 1.1. Next, look for all the terms in

\[
\det(A - \lambda I) = \det \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}
\]

which involve \((-\lambda)^{n-1} \). Explain why they all come from the product down the main diagonal, and find the coefficient of \((-\lambda)^{n-1} \) on the left side of equation 1.1. Compare.

Diagonalization of Matrices

Exercise 1.36 Factor the following matrices into \(SAS^{-1} \):

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}.
\]

Exercise 1.37 Suppose \(A = uv^T \) is a column times a row (a rank-one matrix).
a) By multiplying A times u show that u is an eigenvector. What is λ?
b) What are the other eigenvalues (and why)?
c) Compute trace(A) = $u^T u$ in two ways, from the sum on the diagonal and the sum of λ’s.

\textbf{Exercise 1.38} If A is diagonalizable, show that the determinant of $A = SAS^{-1}$ is the product of the eigenvalues.

\textbf{Symmetric and Positive Semi-Definite Matrices}

\textbf{Exercise 1.39} If $A = Q\Lambda Q^T$ is symmetric positive definite, then $R = Q\sqrt{\Lambda}Q^T$ is its symmetric positive definite square root. Why does R have real eigenvalues? Compute R and verify $R^2 = A$ for

\[
A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 10 & -6 \\ -6 & 10 \end{bmatrix}.
\]

\textbf{Exercise 1.40} If A is symmetric positive definite and C is nonsingular, prove that $B = C^T AC$ is also symmetric positive definite.

\textbf{Exercise 1.41} If A is positive definite and a_{11} is increased, prove from cofactors that the determinant is increased. Show by example that this can fail if A is indefinite.

\textbf{Linear Transformation}

\textbf{Exercise 1.42} Suppose a linear mapping T transforms $(1, 1)$ to $(2, 2)$ and $(2, 0)$ to $(0, 0)$. Find $T(v)$:

(a) $v = (2, 2)$ (b) $v = (3, 1)$ (c) $v = (-1, 1)$ (d) $v = (a, b)$

\textbf{Exercise 1.43} Suppose T is reflection across the 45° line, and S is reflection across the y axis. If $v = (2, 1)$, find $S(T(v))$ and $T(S(v))$. This shows that generally $ST \neq TS$.

\textbf{Exercise 1.44} Suppose we have two bases $v_1, ..., v_n$ and $w_1, ..., w_n$ for \mathbb{R}^n. If a vector has coefficients b_i in one basis and c_i in the other basis, what is the change of basis matrix in $b = Mc$? Start from

\[b_1 v_1 + ... + b_n v_n = V b = c_1 w_1 + ... + c_n w_n = W c.\]

Your answer represents $T(v) = v$ with input basis of v’s and output basis of w’s. Because of different bases, the matrix is not I.

\textbf{Exercise 1.45} In many applications it is crucial that a linear system $Ax = b$ with a square matrix A has a unique solution. Give six conditions on A that are equivalent to $Ax = b$ having a unique solution.
2 Computer Algebra

Definition 2.1 Computer Algebra = Symbol Processing + Numerics + Graphics

Definition 2.2 Symbol Processing is calculating with symbols (variables, constants, function symbols), as in Mathematics lectures.

Symbol Processing

Example 2.1 1. **symbolic:**

\[
\lim_{x \to \infty} \left(\frac{\ln x}{x+1} \right)' = ? \quad (\text{asymptotic behavior})
\]

\[
\left(\frac{\ln x}{x+1} \right)' = \frac{\frac{1}{x} (x+1) - \ln x}{(x+1)^2} = \frac{1}{x+1} \cdot \frac{1}{x} - \frac{\ln x}{(x+1)^2}
\]

\[
x \to \infty: \left(\frac{\ln x}{x+1} \right)' \to \frac{1}{x^2} - \frac{\ln x}{x^2} \to 0
\]

2. **numeric:**

\[
\lim_{x \to \infty} f'(x) = ?
\]

Numerics

Example 2.2 Numerical solution of \(x^2 = 5 \)

\[x^2 = 5, \quad x = \frac{5}{x}, \quad 2x = x + \frac{5}{x}, \quad x = \frac{1}{2} \left(x + \frac{5}{x} \right) \]

iteration:

\[
x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)
\]

<table>
<thead>
<tr>
<th>n</th>
<th>(x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2 ← initial value</td>
</tr>
<tr>
<td>1</td>
<td>2.25</td>
</tr>
<tr>
<td>2</td>
<td>2.236111</td>
</tr>
<tr>
<td>3</td>
<td>2.23606798</td>
</tr>
<tr>
<td>4</td>
<td>2.23606798</td>
</tr>
</tbody>
</table>

\[\Rightarrow \sqrt{5} = 2.23606798 \pm 10^{-8} \] (approximate solution)
Advantages of Symbol Processing:
- often considerably less computational effort compared to numerics.
- symbolic results (for further calculations), proofs in the strict manner possible.

Disadvantages of Symbol Processing:
- often there is no symbolic (closed form) solution, then numerics need to be applied,
 e.g.:
 - Calculation of Integrals
 - Solving Nonlinear Equations like: \(e^x = \sin x \)

2.1 Symbol Processing on the Computer

Example 2.3 Symbolic Computing with natural numbers:
Calculation rules, i.e. Axioms necessary. \(\Rightarrow \) Peano Axioms e.g.:
\[
\forall x, y, z : x + y = y + x \quad \text{(2.1)}
\]
\[
x + 0 = x \quad \text{(2.2)}
\]
\[
(x + y) + z = x + (y + z) \quad \text{(2.3)}
\]

Out of these rules, e.g. \(0 + x = x \) can be deduced:
\[
0 + x = x + 0 \overset{(2.1)}{=} x = x \quad \text{(2.2)}
\]

Symbol Processing by Term Rewriting

Example 2.4 Chain Rule for Differentiation: \([f(g(x))]' \Rightarrow f'(g(x))g'(x) \)
Application:
\[
\sin(ln x + 2)' = \cos(ln x + 2) \frac{1}{x}
\]

Computer: (Pattern matching)
\[
\sin(Plus(ln x, 2))' = \cos(Plus(ln x, 2)) \cdot Plus'(ln x, 2)
\]
\[
= \cos(Plus(ln x, 2)) \cdot Plus(ln' x, 2')
\]
\[
= \cos(Plus(ln x, 2)) \cdot Plus(1/x, 0)
\]
\[
= \cos(Plus(ln x, 2)) \cdot 1/x
\]
\[
= \frac{\cos(ln x + 2)}{x}
\]

Computer Algebra Systems
- Mathematica (S. Wolfram & Co.)
- Maxima [S+01, Haa14]
- Maple (ETH Zurich + Univ. Waterloo, Kanada)
- Octave / Matlab: numerics and graphics only, no symbol processing
2.2 Gnuplot, a professional Plotting Software

Gnuplot is a powerful plotting program with a command line interface and a batch interface. Online documentation can be found on http://www.gnuplot.info

On the command line we can input

```
plot [0:10] sin(x)
```

to obtain the graph

![Graph of sin(x)](image)

Almost arbitrary customization of plots is possible via the batch interface. A simple batch file may contain the lines

```
set terminal postscript eps color enhanced 26
set label "\{Symbol a\}=0.01, \{Symbol g\}=5" at 0.5,2.2
set output "bucket3.eps"
plot [b=0.01:1] a=0.01, c=5, (a-b-c)/(log(a) - log(b)) \
    title "\{Symbol a\}-\{Symbol b\}-\{Symbol g\}\/(ln\{Symbol a\} - ln\{Symbol b\})"
```

producing a EPS file with the graph

![Graph of (a-b-c)/(ln(a) - ln(b))] (image)

3-dimensional plotting is also possible, e.g. with the commands

```
set isosamples 50
splot [-pi:pi][-pi:pi] sin((x**2 + y**3) / (x**2 + y**2))
```

which produces the graph

![3D Graph of sin((x^2 + y^3) / (x^2 + y^2))] (image)

2.3 GNU Octave

From the Octave homepage: GNU Octave is a high-level interpreted language, primarily intended for numerical computations. It provides capabilities for the numerical solution of linear and nonlinear problems, and for performing other numerical experiments. It
also provides extensive graphics capabilities for data visualization and manipulation. Octave is normally used through its interactive command line interface, but it can also be used to write non-interactive programs. The Octave language is quite similar to Matlab so that most programs are easily portable.

Downloads, Docs, FAQ, etc.: http://www.gnu.org/software/octave/

Plotting in Octave: http://www.gnu.org/software/octave/doc/interpreter/Plotting.html

```
// -> comments
octave:4> x = A(2,1)
x = 4

BASICS
=======
octave:47> 1 + 1
ans = 2
octave:48> x = 2 * 3
x = 6
// suppress output
octave:49> x = 2 * 3;
octave:50>
// help
octave:53> help sin
'sin' is a built-in function
-- Mapping Function: sin (X)
   Compute the sine for each element
   of X in radians.
...

VECTORS AND MATRICES
====================
// define 2x2 matrix
octave:1> A = [1 2; 3 4]
A =
    1  2
    3  4
// define 3x3 matrix
octave:3> A = [1 2 3; 4 5 6; 7 8 9]
A =
    1  2  3
    4  5  6
    7  8  9
// transpose
octave:25> A'
an =
    1  4  7
    2  5  8
    3  6 17
// determinant
octave:26> det(A)
ans = -24.000
// solve Ax = b
// access single elements
```
octave:22> inv(A)
ans =
 -1.54167 0.41667 0.12500
 1.08333 0.16667 -0.25000
 0.12500 -0.25000 0.12500

// define vector b
octave:27> b = [3 7 12]'
b =
 3
 7
 12

// solution x
octave:29> x = inv(A) * b
x =
 -0.20833
 1.41667
 0.12500

octave:30> A * x
ans =
 3.0000
 7.0000
 12.0000

// try A\b
// illegal operation
octave:31> x * b
error: operator *: nonconformant
arguments (op1 is 3x1, op2 is 3x1)

// therefore allowed
octave:31> x' * b
ans = 10.792

octave:32> x * b'
ans =
 -0.62500 -1.45833 -2.50000
 4.25000 9.91667 17.00000
 0.37500 0.87500 1.50000

// elementwise operations
octave:11> a = [1 2 3]
a =
 1 2 3
octave:10> b = [4 5 6]
b =
 4 5 6

octave:12> a*b
error: operator *: nonconformant

// vector/matrix size
2.3 GNU Octave

octave:43> size(A)
ans =
3 3
octave:44> size(b)
ans =
3 1
octave:45> size(b)(1)
ans = 3

PLOTTING (2D)
===============

octave:35> x = [-2*pi:0.1:2*pi];
octave:36> y = sin(x);
octave:37> plot(x,y)
octave:38> z = cos(x);
octave:39> plot(x,z)
// two curves in one plot
octave:40> plot(x,y)
octave:41> hold on
octave:42> plot(x,z)
// reset plots
octave:50> close all

// set parameters (gca = get current axis)
octave:99> set(gca,'keypos', 2) // legend pos. (1-4)
octave:103> set(gca,'xgrid','on') // show grid in x
octave:104> set(gca,'ygrid','on') // show grid in y
// title/labels
octave:102> title('OCTAVE DEMO PLOT')
octave:100> xlabel('unit circle')
octave:101> ylabel('trigon. functions')
// store as png
octave:105> print -dpng 'demo_plot.png'

DEFINE FUNCTIONS
================

sigmoid.m:

function S = sigmoid(X)
mn = size(X);
S = zeros(mn);
for i = 1:mn(1)
 for j = 1:mn(2)
 S(i,j) = 1 / (1 + e ^ -X(i,j));
 end
end

easier:

function S = sigmoid(X)
S = 1 ./ (1 .+ e .^ (-X));
end

// plot different styles
octave:76> plot(x,z,'r')
octave:77> plot(x,z,'rx')
octave:78> plot(x,z,'go')

octave:89> close all
// manipulate plot
octave:90> hold on
octave:91> x = [-pi:0.01:pi];
// another linewidth
octave:92> plot(x,sin(x),'linewidth',2)
octave:93> plot(x,cos(x),'r','linewidth',2)
// define axes range and aspect ratio
octave:94> axis([-pi,pi,-1,1], 'equal')
-> try 'square' or 'normal' instead of 'equal'
 octave:1> sig + [TAB]
sigmoid sigmoid.m
octave:1> sigmoid(10)
ans = 0.99995
octave:2> sigmoid([1 10])
error: for x*A, A must be square
// (if not yet implemented elementwise)
error: called from:
error: sigmoid.m at line 3, column 4
...
octave:2> sigmoid([1 10])
ans =
 0.73106 0.99995
octave:3> x = [-10:0.01:10];
octave:5> plot(x,sigmoid(x),'linewidth',3);

PLOTTING (3D)
=============
// meshgrid
octave:54> [X,Y] = meshgrid([1:3],[1:3])
X =
 1 2 3
 1 2 3
 1 2 3
Y =
 1 1 1
 2 2 2
 3 3 3
// meshgrid with higher resolution
// (suppress output)
octave:15>
[X,Y] = meshgrid([-4:0.2:4],[-4:0.2:4]);
// function over x and y, remember that
// cos and sin operate on each element,
// result is matrix again
octave:20> Z = cos(X) + sin(1.5*Y);
// plot
octave:21> mesh(X,Y,Z)

octave:44> contour(X,Y,Z)

octave:45> colorbar
octave:46> pcolor(X,Y,Z)

RANDOM NUMBERS / HISTOGRAMS
===========================
// uniformly distributed random numbers
octave:4> x=rand(1,5)
x =
 0.71696 0.95553 0.17808 0.82110 0.25843
octave:5> x=rand(1,1000);
octave:6> hist(x);
2.4 Exercises

Programming with Octave, Matlab or Python

Exercise 2.1 Program the factorial function.

a) Write an iterative program that calculates the formula $n! = n \cdot (n - 1) \cdot \ldots \cdot 1$.

b) Write a recursive program that calculates the formula

$$n! = \begin{cases}
 n \cdot (n - 1)! & \text{if } n > 1 \\
 1 & \text{if } n = 1
\end{cases}.$$

c) Write a recursive program that calculates the Fibonacci function

$$\text{Fib}(n) = \begin{cases}
 \text{Fib}(n - 1) + \text{Fib}(n - 2) & \text{if } n > 1 \\
 1 & \text{if } n = 0, 1
\end{cases}$$

and test it for $n = 1 \ldots 20$. Report about your results!

d) Plot the computing time of your program as a function of n.

Exercise 2.2

a) Write a program that multiplies two arbitrary matrices. Don’t forget to check the dimensions of the two matrices before multiplying. The formula is

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Do not use built-in functions for matrix manipulation.

b) Write a program that computes the transpose of a matrix.

Exercise 2.3

a) For a finite geometric series we have the formula $\sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q}$. Write a function that takes q and n as inputs and returns the sum.
b) For an infinite geometric series we have the formula $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$ if the series converges. Write a function that takes q as input and returns the sum. Your function should produce an error if the series diverges.

Exercise 2.4
a) Create a 5×10 random Matrix A.

b) Compute the mean of each column and assign the results to elements of a vector called avg.

c) Compute the standard deviation of each column and assign the results to the elements of a vector called s.

Exercise 2.5
Given the vectors $x = [4, 1, 6, 10, -4, 12, 0.1]$ and $y = [-1, 4, 3, 10, -9, 15, -2.1]$, compute the following arrays:

a) $a_{ij} = x_i y_j$

b) $b_{ij} = \frac{x_i}{y_j}$

c) $c_i = x_i y_i$, then add up the elements of c using two different programming approaches.

d) $d_{ij} = \frac{x_i}{x_i + y_j}$

e) Arrange the elements of x and y in ascending order and calculate e_{ij} being the reciprocal of the less x_i and y_j.

f) Reverse the order of elements in x and y in one command.

Exercise 2.6
Write a MATLAB function that recursively calculates the square root of a number without using built-in functions like sqrt().

Calculus Repetition

Exercise 2.7
In a bucket with capacity v there is a poisonous liquid with volume αv. The bucket has to be cleaned by repeatedly diluting the liquid with a fixed amount $(\beta - \alpha)v$ ($0 < \beta < 1 - \alpha$) of water and then emptying the bucket. After emptying, the bucket always keeps αv of its liquid. Cleaning stops when the concentration c_n of the poison after n iterations is reduced from 1 to $c_n < \epsilon > 0$, where $\alpha < 1$.

a) Assume $\alpha = 0.01$, $\beta = 1$ and $\epsilon = 10^{-9}$. Compute the number of cleaning-iterations.

b) Compute the total volume of water required for cleaning.

c) Can the total volume be reduced by reducing β? If so, determine the optimal β.

d) Give a formula for the time required for cleaning the bucket.

e) How can the time for cleaning the bucket be minimized?

3 Calculus – Selected Topics

3.1 Sequences and Convergence

Consider the following sequences:

- \(1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\)
- \(1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, \ldots\)
- \(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots\)
- \(8, 9, 1, -8, -10, -3, 6, 9, 4, -6, -10, \ldots\)
- \(1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, \ldots\)
- \(1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, \ldots\)
- \(1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 38, 39, 41, 43, \ldots\)

Find the next 5 elements of each sequence. If you do not get ahead or want to solve other riddles additionally, have a look at http://www.oeis.org.

Definition 3.1 A function \(\mathbb{N} \rightarrow \mathbb{R}, n \mapsto a_n\) is called sequence. **Notation:** \((a_n)_{n \in \mathbb{N}}\) or \((a_1, a_2, a_3, \ldots)\)

Example 3.1

- \((1, 2, 3, 4, \ldots) = (n)_{n \in \mathbb{N}}\)
- \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots) = (\frac{1}{n})_{n \in \mathbb{N}}\)
- \((1, 2, 4, 8, 16, \ldots) = (2^{n-1})_{n \in \mathbb{N}}\)

Definition 3.2

- \((a_n)_{n \in \mathbb{N}}\) is called **bounded**, if there is \(A, B \in \mathbb{R}\) with \(\forall n \quad A \leq a_n \leq B\)
- \((a_n)_{n \in \mathbb{N}}\) is called **monotonically increasing** (decreasing), iff \(\forall n \quad a_{n+1} \geq a_n \quad (a_{n+1} \leq a_n)\)
- A sequence \((a_n)_{n \in \mathbb{N}}\) converges to \(a \in \mathbb{R}\), iff:

 \[\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} \quad |a_n - a| < \varepsilon \quad \forall n \geq N(\varepsilon)\]
Definition 3.3 A sequence is called **divergent** if it is not **convergent**.

Example 3.2
- $(1, \frac{1}{2}, \frac{1}{3}, ...)$ converges to 0 (zero sequence)
- $(1, 1, 1, ...)$ converges to 1
- $(1, -1, 1, -1, ...)$ is divergent
- $(1, 2, 3, ...)$ is divergent

Theorem 3.1 Every convergent sequence is **bounded**.

Proof: for $\epsilon = 1 : N(1)$, first $N(1)$ terms bounded, the rest bounded through $a \pm N(1)$. \[\square\]

Note: Not every bounded sequence does converge! (see exercise 3), but:

Theorem 3.2 Every bounded monotonic sequence is convergent
3.1.1 Sequences and Limits

Let \((a_n), (b_n)\) two convergent sequences with: \(\lim \limits_{n \to \infty} a_n = a\), \(\lim \limits_{n \to \infty} b_n = b\), then it holds:

\[
\begin{align*}
\lim \limits_{n \to \infty} (a_n \pm b_n) &= \lim \limits_{n \to \infty} a_n \pm \lim \limits_{n \to \infty} b_n = a \pm b \\
\lim \limits_{n \to \infty} (c \cdot a_n) &= c \cdot \lim \limits_{n \to \infty} a_n = c \cdot a \\
\lim \limits_{n \to \infty} (a_n \cdot b_n) &= a \cdot b \\
\lim \limits_{n \to \infty} \left(\frac{a_n}{b_n} \right) &= \frac{a}{b} \text{ if } b_n, b \neq 0
\end{align*}
\]

Theorem 3.3 The sequence \(a_n = \left(1 + \frac{1}{n} \right)^n\), \(n \in \mathbb{N}\) converges.

\[
\begin{array}{c|cccccccc}
 n & 1 & 2 & 3 & 4 & 10 & 100 & 1000 & 10000 \\
 \hline
 a_n & 2 & 2.25 & 2.37 & 2.44 & 2.59 & 2.705 & 2.717 & 2.7181 \\
\end{array}
\]

The numbers (only) suggest that the sequence converges.

Proof:

1. **Boundedness:** \(\forall n\ a_n > 0\) and

\[
a_n = \left(1 + \frac{1}{n} \right)^n \]

\[
= 1 + \frac{1}{n} + \frac{n(n-1)}{2 n^2} \cdot \frac{1}{n} + \frac{n(n-1)(n-2)}{2 \cdot 3 n^3} \cdot \frac{1}{n^3} + \ldots + \frac{1}{n^n}
\]

\[
< 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n!}
\]

\[
< 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n}
\]

\[
< 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots
\]

\[
= \frac{1}{1 - \frac{1}{2}}
\]

\[
= 3
\]

2. **Monotony:** Replacing \(n\) by \(n+1\) in (1.) gives \(a_n < a_{n+1}\), since in line 3 most summands in \(a_{n+1}\) are bigger!

\(\square\)

The limit of this sequence is the *Euler number*:

\[
e := \lim \limits_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828\ldots
\]
3.2 Series

Definition 3.4 Let \((a_n)_{n\in\mathbb{N}}\) be a sequence of real numbers. The sequence
\[
s_n := \sum_{k=0}^{n} a_k , \quad n \in \mathbb{N}
\]
of the partial sums is called (infinite) series and is defined by \(\sum_{k=0}^{\infty} a_k\). If \((s_n)_{n\in\mathbb{N}}\) converges, we define
\[
\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=0}^{n} a_k.
\]

Example 3.3

| \(n\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence (a_n)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>Series (S_n = \sum_{k=0}^{n} a_k)</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>36</td>
<td>45</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>(decimal)</td>
<td>1</td>
<td>1.5</td>
<td>1.75</td>
<td>1.875</td>
<td>1.938</td>
<td>1.969</td>
<td>1.984</td>
<td>1.992</td>
<td>1.996</td>
<td>1.998</td>
<td>1.999</td>
<td></td>
</tr>
</tbody>
</table>

3.2.1 Convergence Criteria for Series

Theorem 3.4 (Cauchy) The series \(\sum_{n=0}^{\infty} a_n\) converges iff
\[
\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \left| \sum_{k=m}^{n} a_k \right| < \varepsilon
\]
for all \(n \geq m \geq N\).

Proof: Let \(s_p := \sum_{k=0}^{p} a_k\). Then \(s_n - s_{m-1} = \sum_{k=m}^{n} a_k\). Therefore \((s_n)_{n\in\mathbb{N}}\) is a Cauchy sequence
\(\Leftrightarrow (s_n)\) is convergent.
Theorem 3.5 A series with $a_k > 0$ for $k \geq 1$ converges iff the sequence of partial sums is bounded.

Proof: as exercise

Theorem 3.6 (Comparison test) Let $\sum_{n=0}^{\infty} c_n$ a convergent series with $\forall n \ c_n \geq 0$ and $(a_n)_{n\in\mathbb{N}}$ a sequence with $|a_n| \leq c_n \ \forall n \in \mathbb{N}$. Then $\sum_{n=0}^{\infty} a_n$ converges.

Theorem 3.7 (Limit comparison test) Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two series with $a_n \neq 0$ and $b_n \neq 0$ for all $n \geq n_0$ and $c = \lim_{n \to \infty} \frac{a_n}{b_n}$. If $0 < c < \infty$, then the series $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} b_n$ converges.

Theorem 3.8 (Ratio test) Let $\sum_{n=0}^{\infty} a_n$ a series with $a_n \neq 0$ for all $n \geq n_0$. A real number q with $0 < q < 1$ exists, that $\left|\frac{a_{n+1}}{a_n}\right| \leq q$ for all $n \geq n_0$. Then the series $\sum_{n=0}^{\infty} a_n$ converges.

If, from an index n_0, $\left|\frac{a_{n+1}}{a_n}\right| \geq 1$, then the series is divergent.

Proof: Apply the comparison test to $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} |a_0|q^n$.

Example 3.4

$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$ converges.

Proof:

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)^2}{2^{n+1}n^2} = \frac{1}{2} \left(1 + \frac{1}{n}\right)^2 \leq \frac{1}{2} \left(1 + \frac{1}{3}\right)^2 = \frac{8}{9} < 1.$$

for $n \geq 3$

3.2.2 Power series
Theorem 3.9 For each $x \in \mathbb{R}$ the power series
\[\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} \]
is convergent.

Proof: The ratio test gives
\[\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}n!}{(n+1)!x^n} \right| = \frac{|x|}{n+1} \leq \frac{1}{2} \quad \text{for } n \geq 2|x| - 1 \]
\[\square \]

Definition 3.5 Euler’s number $e := \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$. The function $\exp : \mathbb{R} \to \mathbb{R}^+ \quad x \mapsto \exp(x)$ is called exponential function.

Theorem 3.10 (Remainder)
\[\exp(x) = \sum_{n=0}^{N} \frac{x^n}{n!} + R_N(x) \quad N-th \ approximation \]
with $|R_N(x)| \leq 2 \frac{|x|^{N+1}}{(N+1)!}$ for $|x| \leq 1 + \frac{N}{2}$ or $N \geq 2(|x| - 1)$

3.2.2.1 Practical computation of $\exp(x)$:
\[
\sum_{n=0}^{N} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \ldots + \frac{x^{N-1}}{(N-1)!} + \frac{x^N}{N!}
\]
\[= 1 + x(1 + \frac{x}{2}(1 + \ldots + \frac{x}{N-2}(1 + \frac{x}{N-1}(1 + \frac{x}{N})\ldots))) \]
\[e = 1 + 1 + \frac{1}{2}(1 + \ldots + \frac{1}{N-2}(1 + \frac{1}{N-1}(1 + \frac{1}{N})\ldots)) + R_N \quad \text{with } R_N \leq \frac{2}{(N+1)!} \]
For $N = 15$: $|R_{15}| \leq \frac{2}{150} < 10^{-13}$
\[e = 2.718281828459 \pm 2 \cdot 10^{-12} \quad \text{(rounding error 5 times } 10^{-13}!) \]

Theorem 3.11 The functional equation of the exponential function $\forall x, y \in \mathbb{R} \quad \exp(x+y) = \exp(x) \cdot \exp(y)$.
Proof: The proof of this theorem is via the series representation (definition 3.5). It is not easy, because it requires another theorem about the product of series (not covered here).

Conclusions:

1. \(\forall x \in \mathbb{R} \quad \exp(-x) = (\exp(x))^{-1} = \frac{1}{\exp(x)} \)
2. \(\forall x \in \mathbb{R} \quad \exp(x) > 0 \)
3. \(\forall n \in \mathbb{Z} \quad \exp(n) = e^n \)

Note: Also for real numbers \(x \in \mathbb{R} \) : \(e^x := \exp(x) \).

Proof:

1. \(\exp(x) \cdot \exp(-x) = \exp(x - x) = \exp(0) = 1 \Rightarrow \exp(-x) = \frac{1}{\exp(x)} \quad x \neq 0 \)
2. \(x \geq 0 \quad \exp(x) = 1 + x + \frac{x^2}{2} + \ldots \geq 1 > 0 \)
 \(x < 0 \quad -x < 0 \Rightarrow \exp(-x) > 0 \Rightarrow \exp(x) = \frac{1}{\exp(-x)} > 0. \)
3. Induction: \(\exp(1) = e \quad \exp(n) = \exp(n - 1 + 1) = \exp(n - 1) \cdot e = e^{n-1} \cdot e \)

Note: for large \(x := n + h \quad n \in \mathbb{N} \quad \exp(x) = \exp(n + h) = e^n \cdot \exp(h) \) (for large \(x \) faster than series expansion)

3.3 Continuity

Functions are often characterized in terms of “smoothness”. The weakest form of smoothness is the continuity.

Definition 3.6 Let \(D \subset \mathbb{R} \), \(f : D \rightarrow \mathbb{R} \) a function and \(a \in \mathbb{R} \). We write \(\lim_{x \to a} f(x) = C \) if for each sequence \((x_n)_{n \in \mathbb{N}}, (x_n) \in D \) with \(\lim_{n \to \infty} x_n = a \) we have

\[
\lim_{n \to \infty} f(x_n) = C.
\]

Definition 3.7 For \(x \in \mathbb{R} \) the expression \(\lfloor x \rfloor \) denotes the unique integer number \(n \) with \(n \leq x < n + 1. \)
Example 3.5
1. \(\lim_{x \to 0} \exp(x) = 1 \)
2. \(\lim_{x \to 1} |x| \) does not exist! left-side limit \(\neq \) right-side limit

![Graph showing left and right limits](image)

Theorem 3.12 For any polynomial \(f(x) = x^k + a_1 x^{k-1} + \ldots + a_{k-1} x + a_k, \ k \geq 1 \), it holds
\[
\lim_{x \to \infty} f(x) = \infty
\]
and
\[
\lim_{x \to -\infty} f(x) = \begin{cases}
\infty, & \text{if } k \text{ even} \\
-\infty, & \text{if } k \text{ odd}
\end{cases}
\]

Proof: for \(x \neq 0 \)
\[
f(x) = x^k \left(1 + \frac{a_1}{x} + \frac{a_2}{x^2} + \ldots + \frac{a_k}{x^k} \right) =: g(x)
\]
since \(\lim_{x \to \infty} g(x) = 0 \), it follows \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^k = \infty. \)

Application: The asymptotic behavior for \(x \to \infty \) of polynomials is always determinated by the highest power of \(x \).

Definition 3.8 (Continuity) Let \(f : D \to \mathbb{R} \) a function and \(a \in D \). The function \(f \) is called continuous at point \(a \), if
\[
\lim_{x \to a} f(x) = f(a).
\]
\(f \) is called continuous in \(D \), if \(f \) is continuous at every point of \(D \).

For this function \(\lim_{x \to a} f(x) \neq a \). \(f \) is discontinuous at the point \(a \).
Example 3.6
- $f : x \mapsto c$ (constant function) is continuous on whole \mathbb{R}.
- The exponential function is continuous on whole \mathbb{R}.
- The identity function $f : x \mapsto x$ is continuous on whole \mathbb{R}.

Theorem 3.13 Let $f, g : D \to \mathbb{R}$ functions, that are at $a \in D$ continuous and let $r \in \mathbb{R}$. Then the functions $f + g, \quad rf, \quad f \cdot g$ at point a are continuous, too. If $g(a) \neq 0$, then $\frac{f}{g}$ is continuous at a.

Proof: Let (x_n) a sequence with $(x_n) \in D$ and $\lim_{n \to \infty} x_n = a$.

\[
\begin{align*}
\lim_{n \to \infty} (f + g)(x_n) &= (f + g)(a) \\
\lim_{n \to \infty} (rf)(x_n) &= (rf)(a) \\
\lim_{n \to \infty} (f \cdot g)(x_n) &= (f \cdot g)(a) \\
\lim_{n \to \infty} \left(\frac{f}{g}\right)(x_n) &= \left(\frac{f}{g}\right)(a)
\end{align*}
\]

holds because of rules for sequences.

□

Definition 3.9 Let A, B, C subsets of \mathbb{R} with the functions $f : A \to B$ and $g : B \to C$. Then $g \circ f : A \to C, \quad x \mapsto g(f(x))$ is called the composition of f and g.

1.) $f \circ g(x) = f(g(x))$
2.) $\sqrt{\circ} \sin(x) = \sqrt{\sin(x)}$
3.) $\sin \circ \sqrt{\circ}(x) = \sin(\sqrt{x})$

Example 3.7
1.) $f \circ g(x) = f(g(x))$
2.) $\sqrt{\circ} \sin(x) = \sqrt{\sin(x)}$
3.) $\sin \circ \sqrt{\circ}(x) = \sin(\sqrt{x})$

Theorem 3.14 Let $f : A \to B$ continuous at $a \in A$ and $g : A \to C$ continuous at $y = f(a)$. Then the composition $g \circ f$ is continuous in a, too.

Proof: to show: $\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = f(a) \implies \lim_{n \to \infty} g(f(x_n)) = g(f(a))$.

Example 3.8 $\frac{x}{x^2 + a}$ is continuous on whole \mathbb{R}, because $f(x) = x^2, g(x) = f(x) + a$ and $h(x) = \frac{x}{g(x)}$ are continuous.

Theorem 3.15 (ε δ Definition of Continuity) A function $f : D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \quad (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon)$$
Theorem 3.16 Let $f : [a, b] \to \mathbb{R}$ continuous and strictly increasing (or decreasing) and $A := f(a), B := f(b)$. Then the inverse function $f^{-1} : [A, B] \to \mathbb{R}$ (or $[B, A] \to \mathbb{R}$) is continuous and strictly increasing (or decreasing), too.

Example 3.9 (Roots) Let $k \in \mathbb{N}, k \geq 2$. The function $f : \mathbb{R}^+ \to \mathbb{R}^+, x \mapsto x^k$ is continuous and strictly increasing. The inverse function $f^{-1} : \mathbb{R}^+ \to \mathbb{R}^+, x \mapsto \sqrt[k]{x}$ is continuous and strictly increasing.

Theorem 3.17 (Intermediate Value) Let $f : [a, b] \to \mathbb{R}$ continuous with $f(a) < 0$ and $f(b) > 0$. Then there exists a $p \in [a, b]$ with $f(p) = 0$.

Note: if $f(a) > 0, f(b) < 0$ take $-f$ instead of f and apply the intermediate value theorem.

Example 3.10 $D = \mathbb{Q}$: $x \mapsto x^2 - 2 = f(x)$ $f(1) = -1, f(2) = 2$ there is a $p \in D$ with $f(p) = 0$.

Corollary 3.3.1 Is $f : [a, b] \to \mathbb{R}$ continuous and \bar{y} is any number between $f(a)$ and $f(b)$, then there is at least one $\bar{x} \in [a, b]$ with $f(\bar{x}) = \bar{y}$.
Note: Now it is clear that every continuous function on \([a, b]\) assumes every value in the interval \([f(a), f(b)]\).

3.3.1 Discontinuity

Definition 3.10 We write \(\lim_{x \to a^-} f(x) = c\) (\(\lim_{x \to a^+} f(x) = c\)), if for every sequence \((x_n)\) with \(x_n > a\) (\(x_n < a\)) and \(\lim_{x \to \infty} x_n = a\) holds: \(\lim_{n \to \infty} f(x_n) = c\). \(\lim_{x \to a^-} f(x)\) (\(\lim_{x \to a^+} f(x)\)) is called right-side (left-side) limit of \(f\) at \(x = a\).

Theorem 3.18 A function is continuous at point \(a\), if the right-side limit and left-side limit are equal to \(f(a)\).

Lemma 3.1 A function is discontinuous at the point \(a\), if limit \(\lim_{x \to a} f(x)\) does not exist.

Conclusion: A function is discontinuous at the point \(a\), if there are two sequences \((x_n), (z_n)\) with \(\lim x_n = \lim z_n = a\) and \(\lim f(x_n) \neq \lim f(z_n)\).

Example 3.11

1. **Step:** \(\lim_{x \to a} f(x) = c_1 \neq c_2 = \lim_{x \to a} f(x)\)

 \[f(x) = x - n \text{ for } n - \frac{1}{2} \leq x < n + \frac{1}{2}, \quad n \in \mathbb{Z}\]

2. **Pole:** \(\lim_{x \to x_0} f(x) = \infty\) or \(\lim_{x \to x_0} f(x) = -\infty\)

 Example: \(f(x) = \frac{1}{x^2}\)

3. **Oscillation:** The function \(f(x) = \sin \frac{1}{x}, \ x \neq 0\) is discontinuous at \(x = 0\)
3 Calculus – Selected Topics

Proof: let \(x_n = \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \), \(n \in \mathbb{N} \) \(\Rightarrow \) \(\sin \frac{1}{x_n} = 1 \) \(\Rightarrow \lim_{n \to \infty} x_n = 0 \), \(\lim_{n \to \infty} \frac{1}{x_n} = 1 \)

but: let \(z_n = \frac{1}{n \cdot \pi}, \ n \in \mathbb{N} \) \(\Rightarrow \lim_{n \to \infty} z_n = 0 \), \(\lim_{n \to \infty} \frac{1}{z_n} = 0 \)

\(\rightarrow \) Limit is not unique, therefore \(\sin \frac{1}{x} \) is discontinuous. \(\square \)

Note: Is a function \(f \) continuous \(\forall x \in [a, b] \), then it holds for any convergent sequence \((x_n) \):

\[\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n). \]

Proof: as exercise

Conclusion: Continuity of \(f \) at \(x_0 = \lim_{n \to \infty} x_n \) means that \(f \) and \(\lim_{n \to \infty} \) can be exchanged.

3.4 Taylor–Series

The Taylor series is a representation of a function as an infinite sum of powers of \(x \).

Goals:
1. Simple representation of functions as polynomials, i.e.:
 \[f(x) \approx a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n \]

2. Approximation of functions in the neighborhood of a point \(x_0 \).

Ansatz:

\[P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \cdots + a_n(x - x_0)^n \]

coefficients \(a_0, \ldots, a_n \) are sought such that

\[f(x) = P(x) + R_n(x) \]

with a remainder term \(R_n(x) \) and \(\lim_{n \to \infty} R_n(x) = 0 \), ideally for all \(x \).

We require for some point \(x_0 \) that

\[f(x_0) = P(x_0), f'(x_0) = P'(x_0), \ldots, f^{(n)}(x_0) = P^{(n)}(x_0) \]

Computation of Coefficients:

\[P(x_0) = a_0, \quad P'(x_0) = a_1, \quad P''(x_0) = 2a_2, \quad \ldots, \quad P^{(k)}(x_0) = k!a_k, \quad \ldots \]
\[f^{(k)}(x_0) = k!a_k \Rightarrow a_k = \frac{f^{(k)}(x_0)}{k!} \]

Result:

\[f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) \]

Example 3.12 Expansion of \(f(x) = e^x \) in the point \(x_0 = 0 \):

\[f(x_0) = f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)} = 1 \]

\[\Rightarrow e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + R_n(x) \]
Example 3.13 \(f(x) = e^x \) Theorems 3.19 and 3.20 yield

\[
e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} + \frac{e^z}{(n+1)!} x^{n+1} \quad \text{for} \quad |z| < |x|
\]

Convergence:

\[
|R_n(x)| \leq \frac{e|x| |x|^{n+1}}{(n+1)!} =: b_n
\]

\[
\left| \frac{b_{n+1}}{b_n} \right| = \frac{|x|}{n+2} \to 0 \quad \text{for} \quad n \to \infty
\]

the ratio test implies convergence of \(\sum_{n=0}^{\infty} b_n \).

\[\Rightarrow \lim_{n \to \infty} b_n = 0 \quad \Rightarrow \lim_{n \to \infty} R_n(x) = 0 \quad \text{for all} \quad x \in \mathbb{R}\]

Thus the Taylor series for \(e^x \) converges to \(f(x) \) for all \(x \in \mathbb{R} \! \).

Example 3.14 Evaluation of the integral

\[\int_0^1 \sqrt{1 + x^3} \, dx.\]

As the function \(f(x) = \sqrt{1 + x^3} \) has no simple antiderivative (primitive function), it cannot be symbolically integrated. We compute an approximation for the integral by integrating the third order Taylor polynomial

\[\sqrt{1 + x^3} = (1 + x^3)^{1/2} \approx 1 + \frac{x^3}{2}\]

and substituting this into the integral

\[\int_0^1 \sqrt{1 + x^3} \, dx \approx \int_0^1 1 + \frac{x^3}{2} \, dx = \left[x + \frac{x^4}{8} \right]_0^1 = \frac{9}{8} = 1.125\]

The exact value of the integral is about 1.11145, i.e. our approximation error is about 1%.

Definition 3.11 The series \(T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \) is called Taylor series of \(f \) with expansion point (point of approximation) \(x_0 \).

Note:

1. For \(x = x_0 \) every Taylor series converges.
2. But for \(x \neq x_0 \) not all Taylor series converge!
3. A Taylor series converges for exactly those \(x \in I \) to \(f(x) \) for which the remainder term from theorem 3.19 (3.20) converges to zero.
4. Even if the Taylor series of \(f \) converges, it does not necessarily converge to \(f \). (→ example in the exercises.)
Example 3.15 (Logarithm series) For $0 < x \leq 2$:
\[
\ln(x) = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \frac{(x - 1)^4}{4} \pm \ldots
\]

Proof:
\[
\ln'(x) = \frac{1}{x}, \quad \ln''(x) = -\frac{1}{x^2}, \quad \ln'''(x) = \frac{2}{x^3}, \quad \ln^{(4)}(x) = -\frac{6}{x^4}, \quad \ln^{(n)}(x) = (-1)^{n-1}\frac{(n-1)!}{x^n}
\]

Induction:
\[
\ln^{(n+1)}(x) = (\ln(x)^{(n)})' = \left((-1)^{(n-1)}\frac{(n-1)!}{x^n}\right)' = (-1)^n\frac{n!}{x^{n+1}}
\]

Expansion at $x_0 = 1$
\[
T_{ln,1}(x) = \sum_{k=0}^{\infty} \frac{\ln^{(k)}(1)}{k!}(x-1)^k = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \frac{(x - 1)^4}{4} \pm \ldots
\]

This series converges only for $0 < x \leq 2$ (without proof).

Definition 3.12 If a Taylor series converges for all x in an interval I, we call I the convergence area.

Is $I = [x_0 - r, x_0 + r]$ or $I = (x_0 - r, x_0 + r)$, r is the convergence radius of the Taylor series.

Example 3.16 Relativistic mass increase:

Einstein: total energy: $E = mc^2$ kinetic energy: $E_{kin} = (m - m_0)c^2$

\[
m(v) = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}
\]

to be shown: for $v \ll c$ we have $E_{kin} \approx \frac{1}{2}m_0v^2$

\[
E_{kin} = (m - m_0)c^2 = \left(1 - \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\right)m_0c^2
\]

\[
\frac{1}{\sqrt{1 - x}} = (1 - x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{-\frac{1}{2}}{2!}\left(\frac{3}{2}\right)x^2 + \ldots
\]

\[
= 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \ldots
\]

for $x \ll 1$:

\[
\frac{1}{\sqrt{1 - x}} \approx 1 + \frac{1}{2}x
\]

\[
\Rightarrow E_{kin} \approx \left(1 + \frac{1}{2}\frac{v^2}{c^2} - 1\right)m_0c^2 = \frac{1}{2}m_0v^2 + \frac{3}{8}m_0v^4 + \ldots
\]
3.5 Differential Calculus in many Variables

\(f : \mathbb{R}^n \to \mathbb{R} \)

\((x_1, x_2, \cdots, x_n) \mapsto y = f(x_1, x_2, \cdots, x_n) \)

or

\(x \mapsto y = f(x) \)

3.5.1 The Vector Space \(\mathbb{R}^n \)

In order to “compare” vectors, we use a norm:

Definition 3.13 Any mapping \(\| \| : \mathbb{R}^n \to \mathbb{R}, x \mapsto \|x\| \) is called **Norm** if and only if

1. \(\|x\| = 0 \) iff \(x = 0 \)
2. \(\|\lambda x\| = |\lambda| \|x\| \) \(\forall \lambda \in \mathbb{R}, x \in \mathbb{R}^n \)
3. \(\|x + y\| \leq \|x\| + \|y\| \) \(\forall x, y \in \mathbb{R}^n \) triangle inequation

the particular norm we will use here is the

Definition 3.14 (Euclidean Norm)

The function \(\| \| : \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}, x \mapsto \sqrt{x_1^2 + \cdots + x_n^2} \) is the **Euclidean Norm** of the vector \(x \).

Lemma: The Euclidean norm is a norm.

Theorem 3.21 For \(x \in \mathbb{R}^n \) we have \(x^2 = xx = \|x\|^2 \)

Proof as exercise.

Note: The scalar product in \(\mathbb{R}^n \) induces the Euclidean norm.

3.5.2 Sequences and Series in \(\mathbb{R}^n \)

analogous to Sequences and Series in \(\mathbb{R} \!\!\!\!\!

Definition 3.15 A mapping \(N \to \mathbb{R}^n, n \mapsto a_n \) is called sequence.

Notation: \((a_n)_{n \in \mathbb{N}} \)

Example 3.17

\[
\begin{pmatrix}
1 & 2 \\
1 & \frac{1}{2}
\end{pmatrix}
, \quad
\begin{pmatrix}
3 & 4 \\
\frac{1}{3} & \frac{1}{4}
\end{pmatrix}
, \quad
\begin{pmatrix}
5 & \frac{1}{5} \\
\frac{1}{16}
\end{pmatrix}
, \quad \cdots = \begin{pmatrix}
n \\
\frac{1}{2^{n-1}}
\end{pmatrix}_{n \in \mathbb{N}}
\]
3.5 Differential Calculus in many Variables

Definition 3.16 A sequence \((a_n)_{n \in \mathbb{N}}\) of vectors \(a_n \in \mathbb{R}^n\) converges to \(a \in \mathbb{R}^n\), if

\[
\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} \; \|a_n - a\| < \varepsilon \; \forall \; n \geq N(\varepsilon)
\]

Notation: \(\lim_{n \to \infty} a_n = a\)

Theorem 3.22 A (vector) sequence \((a_n)_{n \in \mathbb{N}}\) converges to \(a\) if and only if all its coordinate sequences converge to the respective coordinates of \(a\). (Proof as exercise.)

Notation:

\[
a_k = \begin{pmatrix}
a^k_1 \\
\vdots \\
a^k_n
\end{pmatrix} \quad (a_k)_{k \in \mathbb{N}} \quad a_k \in \mathbb{R}^n
\]

Note: Theorem 3.22 enables us to lift most properties of sequences of real numbers to sequences of vectors.

3.5.3 Functions from \(\mathbb{R}^n\) to \(\mathbb{R}^m\)

m = 1: Functions \(f\) from \(D \subset \mathbb{R}^n\) to \(B \subset \mathbb{R}\) have the form

\[
f : D \to B \; , \; \mathbf{x} \mapsto f(\mathbf{x})
\]

\[
\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} \mapsto f(x_1, \ldots, x_n)
\]

Example 3.18

\[
f(x_1, x_2) = \sin(x_1 + \ln x_2)
\]

m \neq 1: Functions \(f\) from \(D \subset \mathbb{R}^n\) to \(B \subset \mathbb{R}^m\) have the form

\[
f : D \to B \; , \; \mathbf{x} \mapsto f(\mathbf{x})
\]

\[
\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} \mapsto \begin{pmatrix}
f_1(x_1, \cdots, x_n) \\
\vdots \\
f_m(x_1, \cdots, x_n)
\end{pmatrix}
\]

Example 3.19
1.
\[f : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \]
\[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{x_1 x_2 x_3} \\ \cos x_1 + \sin x_2 \end{pmatrix} \]

2. Weather parameters: temperature, air pressure and humidity at any point on the earth
\[f : [0^\circ, 360^\circ] \times [-90^\circ, 90^\circ] \rightarrow [-270, \infty] \times [0, \infty] \times [0, 100\%] \]
\[\begin{pmatrix} \Theta \\ \Phi \end{pmatrix} \mapsto \begin{pmatrix} \text{temperature}(\Theta, \Phi) \\ \text{airpressure}(\Theta, \Phi) \\ \text{humidity}(\Theta, \Phi) \end{pmatrix} \]

Note: The components \(f_1(x), \ldots, f_m(x) \) can be viewed (analysed) independently. Thus, in the following we can restrict ourselves to \(f : \mathbb{R}^n \rightarrow \mathbb{R} \).

3.5.3.1 Contour Plots

Definition 3.17 Let \(D \subset \mathbb{R}^2, B \subset \mathbb{R}, c \in B, f : D \rightarrow B \). The set \(\{(x_1, x_2) | f(x_1, x_2) = c\} \) is called contour of \(f \) to the niveau \(c \).

Example 3.20 \(f(x_1, x_2) = x_1 x_2 \)
\[x_1 x_2 = c \]
for
\[x_1 \neq 0 : x_2 = \frac{c}{x_1} \]
(hyperbolas)
\[c = 0 \iff x_1 = 0 \lor x_2 = 0 \]
3.5.4 Continuity in \(\mathbb{R}^n \)

analogous to continuity of functions in one variable:

Definition 3.18 Let \(f : D \to \mathbb{R}^m \) a function and \(a \in \mathbb{R}^n \). If there is a sequence \((a_n) \) (maybe more than one sequence) with \(\lim_{n \to \infty} a_n = a \), we write

\[
\lim_{x \to a} f(x) = c,
\]

if for any sequence \((x_n) \), \(x_n \in D \) with \(\lim_{n \to \infty} x_n = a \):

\[
\lim_{n \to \infty} f(x_n) = c
\]

Definition 3.19 *(Continuity)*

Let \(f : D \to \mathbb{R}^m \) a function and \(a \in D \). The function \(f \) is continuous in \(a \), if \(\lim_{x \to a} f(x) = f(a) \). \(f \) is continuous in \(D \), if \(f \) is continuous in all points in \(D \).

Note: These definitions are analogous to the one-dimensional case.

Theorem 3.23 If \(f : D \to \mathbb{R}^m \), \(g : D \to \mathbb{R}^m \), \(h : D \to \mathbb{R} \) are continuous in \(x_0 \in D \), then \(f + g, f - g, fg \) and \(\frac{f}{h} \) (if \(h(x_0) \neq 0 \)) are continuous in \(x_0 \).

3.5.5 Differentiation of Functions in \(\mathbb{R}^n \)

3.5.5.1 Partial Derivatives

Partial Derivatives

Example 3.21

\[
F : \mathbb{R}^2 \to \mathbb{R}
\]

\[
f(x_1, x_2) = 2x_1^2x_2^3
\]

keep \(x_2 = \text{const.} \), and compute the 1-dim. derivative of \(f \) w.r.t. \(x_1 \):

\[
\frac{\partial f}{\partial x_1}(x_1, x_2) = f_{x_1}(x_1, x_2) = 4x_1x_2^3
\]

analogous with \(x_1 = \text{const.} \)

\[
\frac{\partial f}{\partial x_2} = 6x_1^2x_2^2
\]
second derivatives:
\[
\begin{align*}
\frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} f(x_1, x_2) &= 12x_1x_2^2 \\
\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(x_1, x_2) &= 12x_1x_2^2
\end{align*}
\]
\[\Rightarrow \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_2} = \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_1}\]

Example 3.22
\[
\Phi(u, v, w) = uv + \cos w
\]
\[
\Phi_u(u, v, w) = v \\
\Phi_v(u, v, w) = u \\
\Phi_w(u, v, w) = -\sin w
\]

Definition 3.20 If \(f(x) = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_m(x_1, \ldots, x_n) \end{pmatrix} \) is partially differentiable in \(x = x_0 \), i.e. all partial Derivatives \(\frac{\partial f_i}{\partial x_k}(x_0) \) exist, then the matrix
\[
f'(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_1}{\partial x_2}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \frac{\partial f_m}{\partial x_2}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}
\]
is called Jacobian matrix.

Example 3.23 Linearisation of a function: \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) in \(x_0 \)
\[
f(x) = \begin{pmatrix} 2x_2 \\ \sin(x_1 + x_2) \\ \ln(x_1) + x_2 \end{pmatrix}, \quad f'(x) = \begin{pmatrix} 0 & 2 \\ \cos(x_1 + x_2) & \cos(x_1 + x_2) \\ \frac{1}{x_1} & 1 \end{pmatrix}
\]

1-dimensional
\[
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}
\]

Linearisation \(g \) of \(f \) in \(x_0 = \begin{pmatrix} \pi \\ 0 \end{pmatrix} \)
\[
g(x_1, x_2) = f(\pi, 0) + f'(\pi, 0) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} \pi \\ 0 \end{pmatrix} \right]
\]
\[g(x_1, x_2) = \begin{pmatrix} 0 \\ 0 \\ \ln \pi \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 - \pi \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ -x_1 - x_2 + \pi \\ \frac{x_1}{\pi} + x_2 + \ln \pi - 1 \end{pmatrix} \]

Note: For \(x \to x_0 \) i.e. close to \(x_0 \) the linearisation \(g \) is a good approximation to \(f \) (under which condition?).

Example 3.24 We examine the function \(f : \mathbb{R}^2 \to \mathbb{R} \) with

\[
f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}
\]

Differentiability:

\(f \) is differentiable on \(\mathbb{R}^2 \setminus \{(0, 0)\} \) since it is built up of differentiable functions by sum, product and division.

\[
\frac{\partial f}{\partial x} (x, y) = \frac{y}{\sqrt{x^2 + y^2}} - \frac{x^2 y}{(x^2 + y^2)^{\frac{3}{2}}}
\]

\[
\frac{\partial f}{\partial x} (0, y) = \frac{y}{y} = 1 \\
\frac{\partial f}{\partial x} (x, 0) = 0
\]

\[\Rightarrow \lim_{y \to 0} \frac{\partial f}{\partial x} (0, y) \neq \lim_{x \to 0} \frac{\partial f}{\partial x} (x, 0) \]

\(\Rightarrow \) the partial derivative \(\frac{\partial f}{\partial x} \) is not continuous in \((0, 0)\). \(\Rightarrow f \) is in \((0, 0)\) not differentiable.

Symmetries:

1. \(f \) is symmetric wrt. exchange of \(x \) and \(y \), i.e. w.r.t. the plane \(y = x \).
2. \(f \) is symmetric wrt. exchange of \(x \) and \(-y \), i.e. w.r.t. the plane \(y = -x \).
3. \(f(-x, y) = -f(x, y) \), d.h. \(f \) is symmetric w.r.t. the \(y \)-axis.
4. \(f(x, -y) = -f(x, y) \), d.h. \(f \) is symmetric w.r.t. the \(x \)-axis.

Contours:

\[
\frac{xy}{\sqrt{x^2 + y^2}} = c \quad \Leftrightarrow \quad xy = c \sqrt{x^2 + y^2}
\]

\[\Rightarrow \quad x^2 y^2 = c^2 (x^2 + y^2) \quad \Leftrightarrow \quad y^2 (x^2 - c^2) = c^2 x^2 \]

\[\Rightarrow \quad y = \pm \frac{cx}{\sqrt{x^2 - c^2}} \]

Contours:

\[
y = \begin{cases} \frac{cx}{\sqrt{x^2 - c^2}} & \text{if } c > 0, x > 0 \text{ (1. Quadr.) and } c < 0, x < 0 \text{ (2. Quadr.)} \\ \frac{-cx}{\sqrt{x^2 - c^2}} & \text{if } c > 0, x < 0 \text{ (3. Quadr.) and } c < 0, x > 0 \text{ (4. Quadr.)} \end{cases}
\]
Signs in the quadrants:

\[
\begin{array}{c|c}
- & + \\
+ & - \\
\end{array}
\]

Continuity:

\(f\) is continuous on \(\mathbb{R}^2 \setminus \{(0,0)\}\), since it is built up of continuous functions by sum, product and division. Continuity in \((0,0)\): Let \(\varepsilon > 0\) such that \(\|x\| = \varepsilon\), i.e. \(\varepsilon = \sqrt{x_1^2 + x_2^2} \iff x_2 = \pm \sqrt{\varepsilon^2 - x_1^2}\)

\[f(x_1, x_2) = \pm x_1 \frac{\sqrt{\varepsilon^2 - x_1^2}}{\varepsilon} = \pm \frac{x_1 \varepsilon \sqrt{1 - x_1^2/\varepsilon^2}}{\varepsilon} = \pm x_1 \sqrt{1 - x_1^2/\varepsilon^2}\]

from \(\|x\| \leq \varepsilon\) we get

\[|f(x_1, x_2)| \leq \|x\| = \varepsilon \quad \text{and} \quad \lim_{\|x\| \to 0} f(x_1, x_2) = 0\]

Thus \(f\) is continuous in \((0,0)\).

3.5.5.2 The Gradient

Definition 3.21 \(f : D \to \mathbb{R}(D \subset \mathbb{R}^n)\)

The Vector \(\nabla f(x) := f'(x)^T = \left(\frac{\partial f}{\partial x_1}(x) \right) \ldots \left(\frac{\partial f}{\partial x_n}(x) \right)\) is called **gradient** of \(f\).

The gradient of \(f\) points in the direction of the steepest ascent of \(f\).
Example 3.25
\[f(x, y) = x^2 + y^2 \]
\[\frac{\partial f}{\partial x}(x, y) = 2x \quad \frac{\partial f}{\partial y}(x, y) = 2y \]
\[\Rightarrow \text{grad} f(x, y) = \left(\begin{array}{c} 2x \\ 2y \end{array} \right) = 2 \left(\begin{array}{c} x \\ y \end{array} \right) \]

3.5.5.3 Higher Partial Derivatives

Let \(f : D \to \mathbb{R}^m(D \subset \mathbb{R}^n) \). Thus \(\partial f / \partial x_i(x) \) is again a function mapping from \(D \) to \(\mathbb{R}^m \) and
\[
\frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_i}(x) \right) = \frac{\partial^2 f}{\partial x_k \partial x_i}(x) = f_{x_i x_k}(x)
\]
is well defined.

Theorem 3.24 Let \(D \subset \mathbb{R}^n \) open and \(f : D \to \mathbb{R}^m \) two times partially differentiable. Then we have for all \(x_0 \in D \) and all \(i, j = 1, \ldots, n \)
\[
\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0)
\]

Consequence: If \(f : D \to \mathbb{R}^n(D \subset \mathbb{R}^n \text{ open}) \) is \(k \)-times continuously partially differentiable, then
\[
\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \cdots \partial x_{i_1}} = \frac{\partial^k f}{\partial x_{i_{\Pi(k)}} \cdots \partial x_{i_{\Pi(1)}}}
\]
for any Permutation \(\Pi \) of the numbers \(1, \ldots, k \).

3.5.5.4 The Total Differential

If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable, then the tangential mapping \(f_t(x) = f(x_0) + f'(x_0)(x - x_0) \) represents a good approximation to the function \(f \) in the neighborhood of \(x_0 \) which can be seen in
\[
f_t(x) - f(x_0) = f'(x_0)(x - x_0).
\]
With
\[
df(x) := f_t(x) - f(x_0) \approx f(x) - f(x_0)
\]
and
\[
dx = \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix} := x - x_0
\]
we get:
\[
df(x) = f'(x_0)dx
\]
or

\[df(x) = \sum_{k=1}^{n} \frac{\partial f(x_0)}{\partial x_k} dx_k = \frac{\partial f(x_0)}{\partial x_1} dx_1 + \cdots + \frac{\partial f(x_0)}{\partial x_n} dx_n \]

Definition 3.22 The linear mapping \(df = \sum_{k=1}^{n} \frac{\partial f(x_0)}{\partial x_k} dx_k \) is called **total differential** of the function \(f \) in \(x_0 \).

Note: Since in a neighborhood of \(x_0 \), \(f_t \) is a good approximation of the function \(f \), we have for all \(x \) close to \(x_0 \):

\[df(x) \approx f(x) - f(x_0). \]

Thus \(df(x) \) gives the approximate deviation of the function value \(f(x) \) from \(f(x_0) \), when \(x \) deviates from \(x_0 \) a little bit.

3.5.5.5 Application: The Law of Error Propagation

Example 3.26 For a distance of \(s = 10 \text{ km} \) a runner needs the time of \(t = 30 \text{ min} \) yielding an average speed of \(v = \frac{s}{t} = 20 \frac{\text{km}}{\text{h}} \). Let the measurement error for the distance \(s \) be \(\Delta s = 1 \text{ m} \) and for the time we have \(\Delta t = 1 \text{ sec} \). Give an upper bound on the propagated error \(\Delta v \) for the average speed!

This can be solved as follows. To the given measurements \(x_1, \cdots, x_n \), a function \(f : \mathbb{R}^n \to \mathbb{R} \) has to be applied. The measurement error for \(x_1, \cdots, x_n \) is given as \(\pm \Delta x_1, \cdots, \pm \Delta x_n \) (\(\Delta x_i > 0 \ \forall i = 1, \cdots, n \)). The law of error propagation gives as a rough upper bound for the error \(\Delta f(x) \) of \(f(x_1, \cdots, x_n) \) the assessment

\[\Delta f(x_1, \cdots, x_n) < \left| \frac{\partial f(x)}{\partial x_1}(x) \right| \Delta x_1 + \cdots + \left| \frac{\partial f(x)}{\partial x_n}(x) \right| \Delta x_n \]

Definition 3.23 We call

\[\Delta f_{\text{max}}(x_1, \cdots, x_n) := \left| \frac{\partial f(x)}{\partial x_1}(x) \right| \Delta x_1 + \cdots + \left| \frac{\partial f(x)}{\partial x_n}(x) \right| \Delta x_n \]

the **maximum error** of \(f \). The ratio \(\frac{\Delta f_{\text{max}}(x)}{f(x)} \) is the **relative maximum error**.

Note: \(\Delta f_{\text{max}} \) typically gives a too high estimate for the error of \(f \), because this value only occurs if all measurement errors \(dx_1, \cdots, dx_n \) add up with the same sign. This formula should be applied for about \(n \leq 5 \).
Definition 3.24 When the number of measurements \(n \) becomes large, a better estimate for the error \(\Delta f \) is given by the formula

\[
\Delta f_{\text{mean}}(x_1, \ldots, x_n) := \sqrt{\left(\frac{\partial f}{\partial x_1}(x) \right)^2 \Delta x_1 + \ldots + \left(\frac{\partial f}{\partial x_m}(x) \right)^2 \Delta x_n}
\]

for the mean error of \(f \).

Example 3.27 Solution for example 3.26. Application of the maximum error formula leads to

\[
\Delta v(s, t) = \left| \frac{\partial v}{\partial s}(s, t) \right| \Delta s + \left| \frac{\partial v}{\partial t}(s, t) \right| \Delta t = \frac{1}{t} \Delta s + \left| -\frac{s}{t^2} \right| \Delta t = \frac{\Delta s}{t} + \frac{s}{t^2} \Delta t
\]

\[
= 0.001 \text{ km} \cdot \frac{0.5}{h} + 10 \text{ km} \cdot \frac{1}{0.25 \text{ h}^2 \cdot 3600 \text{ h}} = \left(\frac{0.002}{3600} + \frac{40}{3600} \right) \frac{km}{h} = 0.013 \frac{km}{h}
\]

This can be compactly written as the result \(v = (20 \pm 0.013) \frac{km}{h} \).

Definition 3.25 Let \(f : D \rightarrow \mathbb{R} \) two times continuously differentiable. The \(n \times n \)-Matrix

\[
(Hess \ f)(x) := \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x)
\end{pmatrix}
\]

is the Hessian–Matrix of \(f \) in \(x \).

Note: \(Hess f \) is symmetric, since

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}
\]

3.5.6 Extrema without Constraints

Again we appeal to your memories of one–dimensional analysis: How do you determine extrema of a function \(f : \mathbb{R} \rightarrow \mathbb{R} \)? This is just a special case of what we do now.
Definition 3.26 Let $D \subset \mathbb{R}^n$ and $f : D \to \mathbb{R}$ a function. A point $x \in D$ is a **local maximum (minimum)** of f, if there is a neighborhood $U \subset D$ of x such that

$$f(x) \geq f(y) \quad (f(x) \leq f(y)) \quad \forall y \in U.$$

Analogously, we have an **isolated local Maximum (Minimum)** in x, if there is a neighborhood $U \subset D$ of x such that

$$f(x) > f(y) \quad (\text{bzw. } f(x) < f(y)) \quad \forall y \in U, \quad y \neq x$$

All these points are called **extrema**.

If the mentioned neighborhood U of an extremum is the whole domain, i.e. $U = D$, then the extremum is **global**.

Give all local, global, isolated and non-isolated maxima and minima of the function shown in the following graphs:

![Graph 1](image1)

![Graph 2](image2)

Plot3D[f[x,y], {x,-5,5},{y,-5,5}, PlotPoints -> 30]

ContourPlot[f[x,y], {x,-5,5},{y,-5,5}, PlotPoints -> 60, ContourSmoothing -> True,ContourShading-> False]

Theorem 3.25 Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}$ partially differentiable. If f has a local extremum in $x \in D$, then $\text{grad} f(x) = 0$.

Proof: Reduction on 1–dim. case: For $i = 1, \ldots, n$ define $g_i(h) := f(x_1, \ldots, x_i + h, \ldots, x_n)$. If f has a local extremum in x, then all g_i have a local extremum in 0. Thus we have for all i: $g_i'(0) = 0$. Since $g_i'(0) = \frac{\partial f(x)}{\partial x_i}$ we get

$$\text{grad} f(x) = \left(\begin{array}{c} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{array} \right) = 0$$
Note:
- Theorem 3.25 represents a necessary condition for local extrema.
- Why is the proposition of Theorem 3.25 false if $D \subset \mathbb{R}^n$ is no open set?

Linear Algebra Reminder:

Definition 3.27 Let A a symmetric $n \times n$–Matrix of real numbers.

- A is **positive (negative) definite**, if all eigenvalues of A are positive (negative).
- A is **positive (negative) semidefinite**, if all eigenvalues are ≥ 0 (≤ 0).
- A is **indefinite**, if all eigenvalues are $\neq 0$ and there exist positive as well as negative eigenvalues.

Theorem 3.26 The Hurwitz Criterion

Let A real valued symmetric matrix. A is positive definite, if and only if for $k = 1, \cdots, n$

\[
\begin{vmatrix}
 a_{11} & \cdots & a_{1k} \\
 \vdots & & \vdots \\
 a_{k1} & \cdots & a_{kk}
\end{vmatrix} > 0
\]

A is negative definite if and only if $-A$ is positive definite.

Theorem 3.27 For $D \subset \mathbb{R}^n$ open and two times continuously differentiable $f : D \to \mathbb{R}$ with $\text{grad} f(x) = 0$ for $x \in D$ the following holds:

- **a)** $(\text{Hess} f)(x)$ positive definite \Rightarrow f has in x an isolated minimum
- **b)** $(\text{Hess} f)(x)$ negative definite \Rightarrow f has in x an isolated maximum
- **c)** $(\text{Hess} f)(x)$ indefinite \Rightarrow f has in x no local extremum.

Procedure for the application of theorems 3.25 and 3.26 to search local extrema of a function $f : (D \subset \mathbb{R}^n) \to \mathbb{R}$:

1. Computation of $\text{grad} f$
2. Computation of the zeros of $\text{grad} f$
3. Computation of the Hessian matrix $\text{hess} f$
4. Evaluation of $\text{hess} f(x)$ for all zeros x of $\text{grad} f$.

Example 3.28 Some simple functions $f : \mathbb{R}^2 \to \mathbb{R}$:

1. $f(x, y) = x^2 + y^2 + c$

 \[
 \text{grad} f(x, y) = \begin{pmatrix}
 2x \\
 2y
 \end{pmatrix} \Rightarrow \text{grad} f(0, 0) = \begin{pmatrix}
 0 \\
 0
 \end{pmatrix} = 0
 \]
\[hessf = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \]

is positive definite on all \(\mathbb{R}^2 \). \(\Rightarrow \) \(f \) has an isolated local minimum in 0 (paraboloid).

2. \(f(x, y) = -x^2 - y^2 + c \)

\[\text{grad} f(0, 0) = 0 \quad hessf = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \]

\(\Rightarrow \) isolated local maximum in 0 (paraboloid).

3. \(f(x, y) = ax + by + c \quad a, b \neq 0 \)

\[\text{grad} f \neq 0 \quad \forall x \in \mathbb{R}^2 \]

\(\Rightarrow \) no local extremum.

4. \(f(x, y) = x^2 - y^2 + c \)

\[\text{grad} f(x, y) = \begin{pmatrix} 2x \\ -2y \end{pmatrix} \Rightarrow \text{grad} f(0, 0) = 0 \]

\[hessf = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \]

\(\Rightarrow \) \(hessf \) indefinite \(\Rightarrow \) \(f \) has no local extremum.

5. \(f(x, y) = x^2 + y^4 \)

\[\text{grad} f = \begin{pmatrix} 2x \\ 4y^3 \end{pmatrix} \Rightarrow \text{grad} f(0, 0) = 0 \]

\[hessf(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \]

\(\Rightarrow \) \(hessf \) positive semidefinite, but \(f \) has in 0 an isolated minimum.

6. \(f(x, y) = x^2 \)

\[\text{grad} f = \begin{pmatrix} 2x \\ 0 \end{pmatrix} \Rightarrow \text{grad} f(0, y) = 0 \]

\[hessf(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \]

\(\Rightarrow \) \(hessf \) positive semidefinite, but \(f \) has a (non isolated) local minimum. All points on the y–axis (\(x = 0 \)) are local minima.

7. \(f(x, y) = x^2 + y^3 \)

\[\text{grad} f(x, y) = \begin{pmatrix} 2x \\ 3y^2 \end{pmatrix} \Rightarrow \text{grad} f(0, 0) = 0 \]

\[hessf(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \]

\(\Rightarrow \) \(hessf \) positive semidefinite, but \(f \) has no local extremum.
3.5 Differential Calculus in many Variables

3.5.7 Extrema with Constraints

Example 3.29 Which rectangle (length x, width y) has maximal area, given the perimeter U.

Area $f(x, y) = xy$. The function $f(x, y)$ has no local maximum on \mathbb{R}^2!

Constraint: $U = 2(x + y)$ or $x + y = \frac{U}{2}$ substituted in $f(x, y) = xy$

\[g(x) := f(x, \frac{U}{2} - x) = x\left(\frac{U}{2} - x\right) = \frac{U}{2}x - x^2 \]

\[g'(x) = \frac{U}{2} - 2x = 0 \]

\[x = \frac{U}{4} \]

\[y = \frac{U}{4} \]

\[g''\left(\frac{U}{4}\right) = -2 \]

$\Rightarrow x = y = U/4$ has (the unique) maximum area for constant perimeter U!

In many cases substitution of constraints is not feasible!

Wanted: Extremum of a function $f(x_1, \cdots, x_n)$ under the p constraints

\[h_1(x_1, \cdots, x_n) = 0 \]

\[\vdots \]

\[h_p(x_1, \cdots, x_n) = 0 \]

Theorem 3.28 Let $f : D \rightarrow \mathbb{R}$ and $h : D \rightarrow \mathbb{R}^p$ be continuously differentiable functions on an open set $D \subset \mathbb{R}^n, n > p$ and the matrix $h'(x)$ has rank p for all $x \in D$.

If $x_0 \in D$ is an extremum of f under the constraint(s) $h(x_0) = 0$, there exist real numbers $\lambda_1, \cdots, \lambda_p$ with

\[\frac{\partial f}{\partial x_i}(x_0) + \sum_{k=1}^{p} \lambda_k \frac{\partial h_k}{\partial x_i}(x_0) = 0 \quad \forall i = 1, \cdots, n \]

and

\[h_k(x_0) = 0 \quad \forall k = 1, \cdots, p \]

Illustration:

For $p = 1$, i.e. only one given constraint, the theorem implies that for an extremum x_0 of f under the constraint $h(x_0) = 0$ we have

\[\nabla f(x_0) + \lambda \nabla h(x_0) = 0 \]
• \(\nabla f \) and \(\nabla h \) are parallel in the extremum \(x_0 \! \)!
• \(\Rightarrow \) Contours of \(f \) and \(h \) for \(h(x) = 0 \) are parallel in \(x_0 \).
• The numbers \(\lambda_1, \cdots, \lambda_p \) are the **Lagrange multipliers**.

Note: We have to solve \(n + p \) equations with \(n + p \) unknowns. Among the solutions of this (possibly nonlinear) system the extrema have to be determined. Not all solutions need to be extrema of \(f \) under the constraint(s) \(h(x_0) = 0 \) (necessary but not sufficient condition for extrema.)

Definition 3.28 Let \(f, h \) be given as in theorem 3.28. The function \(L : D \to \mathbb{R} \)

\[
L(x_1, \cdots, x_n) = f(x_1, \cdots, x_n) + \sum_{k=1}^{p} \lambda_k h_k(x_1, \cdots, x_n)
\]

is called **Lagrange function**.

Conclusion: The equations to be solved in theorem 3.28 can be represented as:

\[
\frac{\partial L}{\partial x_i}(x) = 0 \quad (i = 1, \cdots, n)
\]

\[
h_k(x) = 0 \quad (k = 1, \cdots, p)
\]

Example 3.30 Extrema of \(f(x, y) = x^2 + y^2 + 3 \) under the constraint \(h(x, y) = x^2 + y - 2 = 0 \)

Contours of \(x^2+y^2+3 \) and constraint \(x^2+y-2=0 \)

\[
L(x, y) = x^2 + y^2 + 3 + \lambda(x^2 + y - 2)
\]

\[
\frac{\partial L}{\partial x}(x, y) = 2x + 2\lambda x
\]

\[
\frac{\partial L}{\partial y}(x, y) = 2y + \lambda
\]
\[\text{grad} L(x, y) = 0 \quad \text{and} \quad h(x, y) = 0 \]

\[\begin{align*}
2x + 2\lambda x &= 0 \quad (1) \\
2y + \lambda &= 0 \quad (2) \\
x^2 + y - 2 &= 0 \quad (3) \\
\text{(2) in (1)}: \quad 2x - 4xy &= 0 \quad (4) \\
y &= 2 - x^2 \quad (3a) \\
\text{(3a) in (4)}: \quad 2x - 4x(2 - x^2) &= 0 \\
x(2x^2 - 3) &= 0 \quad (4a)
\end{align*} \]

First solution: \(x_1 = \left(\frac{0}{2} \right) \) is a maximum.

\[2x^2 = 3 \]

\[x_{2,3} = \pm \sqrt{\frac{3}{2}} \quad y_{2,3} = \frac{1}{2} \]

\(x_2 = \left(\sqrt{\frac{3}{2}} \right) \) and \(x_3 = \left(-\sqrt{\frac{3}{2}} \right) \) are minima.

Example 3.31 Extrema of the function \(f(x, y) = 4x^2 - 3xy \) on the disc \(\overline{K_{\Theta,1}} = \{(x, y)| x^2 + y^2 \leq 1 \} \).

1. Local extrema inside the disc \(\overline{D}_{\Theta,1} \):

\[\text{grad} f(x, y) = \begin{pmatrix} 8x - 3y \\ -3x \end{pmatrix} = 0 \]
\[\Rightarrow \mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \] is the unique zero of the gradient.

\[\text{hessf} = \begin{pmatrix} 8 & -3 \\ -3 & 0 \end{pmatrix} \]

\[|8| = 8 \]
\[\begin{vmatrix} 8 & -3 \\ -3 & 0 \end{vmatrix} = 0 - 9 = -9 \]

\[\Rightarrow \text{hessf} \text{ is neither positive nor negative definite. } \]

\[\text{Eigenvalues of } \text{hessf} =: \quad A \]

\[A \mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad (A - \lambda) \mathbf{x} = 0 \]

\[\Leftrightarrow \quad \begin{pmatrix} 8 - \lambda & -3 \\ -3 & -\lambda \end{pmatrix} \mathbf{x} = 0 \quad \Leftrightarrow \quad \det \left(\begin{pmatrix} 8 - \lambda & -3 \\ -3 & -\lambda \end{pmatrix} \right) = 0 \]
\[\Leftrightarrow \quad (8 - \lambda)(-\lambda) - 9 = 0 \quad \Leftrightarrow \quad \lambda^2 - 8\lambda - 9 = 0 \]
\[\lambda_{1,2} = 4 \pm \sqrt{16 + 9} \]
\[\lambda_1 = 9 \]
\[\lambda_2 = -1 \]

\[\Rightarrow \text{hessf} \text{ is indefinite } \Rightarrow f \text{ has no local extremum on any open set } D. \Rightarrow \text{ in particular } f \text{ has on } D_{0,1} \text{ no extremum!} \]

\[\text{2. Local extrema on the margin, i.e. on } \partial D_{0,1}: \]

local extrema von \(f(x, y) = 4x^2 - 3xy \) under the constraint \(x^2 + y^2 - 1 = 0 \):

Lagrangefunction \(L = 4x^2 - 3xy + \lambda(x^2 + y^2 - 1) \)

\[\frac{\partial L}{\partial x} = 8x - 3y + 2\lambda x = (2\lambda + 8)x - 3y \]
\[\frac{\partial L}{\partial y} = -3x + 2\lambda y \]

Equations for \(x, y, \lambda \):

\begin{align*}
(1) & \quad 8x - 3y + 2\lambda x = 0 \\
(2) & \quad -3x + 2\lambda y = 0 \\
(3) & \quad x^2 + y^2 - 1 = 0 \\
(1)y - (2)x = (4) & \quad 8xy - 3y^2 + 3x^2 = 0
\end{align*}

first solution: \((3) \Rightarrow (3a) : \quad y^2 = 1 - x^2 \)

\((3a)\text{in}(4) : \pm 8x\sqrt{1 - x^2} - 3(1 - x^2) + 3x^2 = 0 \)

Subst.: \(x^2 = u : \quad \pm 8\sqrt{u} \sqrt{1 - u} = 3(1 - u) - 3u = 3 - 6u \)
squaring:

\[
64u(1 - u) = 9 - 36u + 36u^2
\]
\[
-64u^2 + 64u - 36u^2 + 36u - 9 = 0
\]
\[
-100u^2 + 100u - 9 = 0
\]
\[
u^2 - u + \frac{9}{100} = 0
\]
\[
u_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{9}{100}} = \frac{1}{2} \pm \sqrt{\frac{25 - 9}{100}} = \frac{1}{2} \pm \frac{4}{10}
\]
\[
u_1 = 0.1
\]
\[
u_2 = 0.9
\]
\[
x_{1,2} = \pm \frac{1}{\sqrt{10}} \approx \pm 0.3162
\]
\[
x_{3,4} = \pm \frac{3}{\sqrt{10}} \approx \pm 0.9487
\]

Contours:

\[
f(x, y) = 4x^2 - 3xy = c
\]
\[
y = \frac{-c + 4x^2}{3x} = \frac{4}{3}x - \frac{c}{3x}
\]
\[
x_3 = \frac{3}{\sqrt{10}} \Rightarrow y_3 = \pm \sqrt{1 - x_3^2} = \pm \frac{1}{\sqrt{10}}
\]
\[
f\left(\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right) = 4 \frac{9}{10} - 3 \frac{3}{10} = \frac{27}{10}
\]
\[
f\left(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right) = 4 \frac{9}{10} + 3 \frac{3}{10} = \frac{45}{10}
\]

⇒ \(f(x, y)\) has on \(K_{0,1}\) in \(x_1 = \left(\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)\) and in \(x_2 = \left(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)\) isolated local maxima

⇒ \(f(x, y)\) has on \(K_{0,1}\) in \(x_3 = \left(\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)\) and in \(x_4 = \left(-\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)\) isolated local minima.

3.5.7.1 The Bordered Hessian

In order to check whether a candidate point for a constrained extremum is a maximum or minimum, we need a sufficient condition, similarly to the definiteness of the Hessian in the unconstrained case. Here we need the **Bordered Hessian**

\[
\text{Hess} := \begin{pmatrix}
0 & \cdots & 0 & \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \frac{\partial h_p}{\partial x_1} & \cdots & \frac{\partial h_p}{\partial x_n} \\
\frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} & \frac{\partial^2 L}{\partial x_1^2} & \cdots & \frac{\partial^2 L}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial h_p}{\partial x_1} & \cdots & \frac{\partial h_p}{\partial x_n} & \frac{\partial^2 L}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 L}{\partial x_1 \partial x_n}
\end{pmatrix}
\]

This matrix can be used to check on local minima and maxima by computing certain subdeterminants. Here we show this only for the two dimensional case with one constraint where the bordered Hessian has the form

\[
\text{Hess} := \begin{pmatrix}
0 & \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\
\frac{\partial h_1}{\partial x_1} & \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 x_2} \\
\frac{\partial h_1}{\partial x_2} & \frac{\partial^2 L}{\partial x_1 x_2} & \frac{\partial^2 L}{\partial x_2^2}
\end{pmatrix}
\]
and the sufficient criterion for local extrema is (in contrast to the unconstrained case!) the following simple determinant condition: Under the constraint $h(x, y) = 0$ the function f has in (x, y) a

- local maximum, if $|\text{Hess}(x, y)| > 0$
- local minimum, if $|\text{Hess}(x, y)| < 0$.

If $|\text{Hess}(x, y)| = 0$, we cannot decide on the properties of the stationary point (x, y).

Application to example 3.30 yields

$$\text{grad} L(x, y) = \begin{pmatrix} 2x(1 + \lambda) \\ 2y + \lambda \end{pmatrix}$$

$$\text{Hess}(x, y) = \begin{pmatrix} 0 & 2x & 1 \\ 2x & 2(1 + \lambda) & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

Substitution of the first solution of grad$L = 0$ which is $x = 0, y = 2, \lambda = -4$ into this matrix gives

$$|\text{Hess}(0, 2)| = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -6 & 0 \\ 1 & 0 & 2 \end{vmatrix} = 6$$

which proves that we indeed have a maximum in $(0, 2)$.

3.5.7.2 Extrema under Inequality Constraints

We recall that for finding an extremum of a function $f(x)$ under the constraint $g(x) = 0$, we have to find a stationary point of the Lagrange function

$$L(x, \lambda) = f(x) + \lambda g(x)$$

by solving grad$L(x, \lambda) = 0$.

In example 3.31 we had to find an extremum under an inequality constraint. We now want to develop a general method for finding a maximum (minimum) of a function $f(x)$ under a constraint $g(x) \geq 0$ as shown in figure 3.1.

Figure 3.1:
As in the example we have to consider two cases. Either \(g(x) > 0 \), i.e. the constraint is inactive, or \(g(x) = 0 \) and the constraint is active. If \(g(x) > 0 \) the condition for an extremum is simply \(\text{grad} f(x) = 0 \). This is equivalent to solving \(\text{grad} L(x, \lambda) = 0 \) with \(\lambda = 0 \).

If the solution lies on the margin, i.e. \(g(x) = 0 \), we can apply the Lagrange formalism as shown above and get \(\lambda \neq 0 \). Now \(f(x) \) will only have its maximum on the margin if \(\lambda > 0 \). If \(\lambda < 0 \), \(f \) will be at a minimum on the margin (cf. exercise 3.31).

Thus, for finding a maximum of \(f(x) \) under the constraint \(g(x) \geq 0 \), in both cases we have \(\lambda g(x) = 0 \).

Thus, to find a maximum of \(f(x) \) under the constraint \(g(x) \geq 0 \), we have to maximize the Lagrange function with respect to \(x \) and \(\lambda \) under the so called Karush-Kuhn-Tucker conditions

\[
\begin{align*}
g(x) &\geq 0 \\
\lambda &\geq 0 \\
\lambda g(x) &= 0.
\end{align*}
\]

must hold.

3.6 Exercises

Sequences, Series, Continuity

Exercise 3.1 Prove (e.g. with complete induction) that for all \(n \in \mathbb{N} \) and all \(p \in \mathbb{R} \):

\[
\sum_{k=0}^{n}(p + k) = \frac{(n + 1)(2p + n)}{2}
\]

Exercise 3.2

a) Calculate

\[
\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}}}
\]

i.e. the limit of the sequence \((a_n)_{n \in \mathbb{N}} \) with \(a_0 = 1 \) and \(a_{n+1} = \sqrt{1 + a_n} \). Give an exact solution as well as an approximation with a precision of 10 decimal places.

* b) Prove that the sequence \((a_n)_{n \in \mathbb{N}} \) converges.

Exercise 3.3 Calculate

\[
1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots}}}
\]

i.e. the limit of the sequence \((a_n)_{n \in \mathbb{N}} \) with \(a_0 = 1 \) and \(a_{n+1} = 1 + 1/a_n \). Give an exact solution as well as an approximation with a precision of 10 decimal places.

* **Exercise 3.4** Investigate the sequence \((a_n)_{n \in \mathbb{N}} \) with \(a_n := 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{n} \).
regarding convergence.

Exercise 3.5 Calculate the infinite sum $\sum_{n=0}^{\infty} \frac{1}{2^n}$.

Exercise 3.6 Prove: A series $\sum_{k=0}^{\infty} a_k$ with $\forall k: a_k > 0$ converges if and only if the sequence of the partial sums is bounded.

Exercise 3.7 Calculate an approximation (if possible) for the following series and investigate their convergence.

- a) $\sum_{n=1}^{\infty} (n+1)2^{-n}$
- b) $\sum_{n=0}^{\infty} 4^n(n+1)! n^{-n}$
- c) $\sum_{n=0}^{\infty} 3n[4 + (1/n)]^{-n}$

Exercise 3.8 Investigate the following functions $f : \mathbb{R} \to \mathbb{R}$ regarding continuity (give an outline for each graph):

- a) $f(x) = \frac{1}{1 + e^{-x}}$
- b) $f(x) = \begin{cases} 0 & \text{if } x = 1 \\ \frac{x}{x-1} & \text{else} \end{cases}$
- c) $f(x) = \begin{cases} x + 4 & \text{if } x > 0 \\ (x+4)^2 & \text{else} \end{cases}$
- d) $f(x) = \begin{cases} (x-2)^2 & \text{if } x > 0 \\ (x+2)^2 & \text{else} \end{cases}$
- e) $f(x) = |x|$
- f) $f(x) = x - |x|$
- g) $f(x) = \left| \left\lfloor x + \frac{1}{2} \right\rfloor - x \right|$**

Exercise 3.9 Show that $f : \mathbb{R} \to \mathbb{R}$ with

$$f(x) = \begin{cases} 0 & \text{if } x \text{ rational} \\ 1 & \text{if } x \text{ irrational} \end{cases}$$

is not continuous in any point.

Taylor–Series

Exercise 3.10 Calculate the Taylor series of sine and cosine with $x_0 = 0$. Prove that the Taylor series of sine converges towards the sine function.

Exercise 3.11 Try to expand the function $f(x) = \sqrt{x}$ at $x_0 = 0$ and $x_0 = 1$ into a Taylor series. Report about possible problems.

Exercise 3.12 Let f be expandable into a Taylor series on the interval $(-r, r)$ around 0 ($r > 0$). Prove:

- a) If f is an even function ($f(x) = f(-x)$) for all $x \in (-r, r)$, then only even exponents appear in the Taylor series of f, it has the form $\sum_{k=0}^{\infty} a_{2k}x^{2k}$.
- b) If f is an odd function ($f(x) = -f(-x)$) for all $x \in (-r, r)$, then only odd exponents appear in the Taylor series of f, it has the form $\sum_{k=0}^{\infty} a_{2k+1}x^{2k+1}$.**
Exercise 3.13 Calculate the Taylor series of the function

\[f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \]

at \(x_0 = 0 \) and analyse the series for convergence. Justify the result!

Exercise 3.14 Calculate the Taylor series of the function \(\arctan \) in \(x_0 = 0 \). Use the result for the approximate calculation of \(\pi \). (Use for this for example \(\tan(\pi/4) = 1 \).)

Functions from \(\mathbb{R}^n \) to \(\mathbb{R}^m \)

Exercise 3.15 Prove that the dot product of a vector \(\mathbf{x} \) with itself is equal to the square of its length (norm).

Exercise 3.16

a) Give a formal definition of the function \(f : \mathbb{R} \to \mathbb{R}^+ \cup \{0\} \) with \(f(x) = |x| \).

b) Prove that for all real numbers \(x, y \), \(|x + y| \leq |x| + |y| \).

Exercise 3.17

a) In industrial production in the quality control, components are measured and the values \(x_1, \ldots, x_n \) determined. The vector \(\mathbf{d} = \mathbf{x} - \mathbf{s} \) indicates the deviation of the measurements to the nominal values \(s_1, \ldots, s_n \). Now define a norm on \(\mathbb{R}^n \) such that \(||\mathbf{d}|| < \varepsilon \) holds, iff all deviations from the nominal value are less than a given tolerance \(\varepsilon \).

b) Prove that the in a) defined norm satisfies all axioms of a norm.

Exercise 3.18 Draw the graph of the following functions \(f : \mathbb{R}^2 \to \mathbb{R} \) (first manually and then by the computer!):

\[f_1(x, y) = x^2 + y^3, \quad f_2(x, y) = x^2 + e^{-(10x)^2} \quad f_3(x, y) = x^2 + e^{-(5(x+y))^2} + e^{-(5(x-y))^2} \]

Exercise 3.19 Calculate the partial derivatives \(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \) of the following functions \(f : \mathbb{R}^3 \to \mathbb{R} \)

a) \(f(\mathbf{x}) = ||\mathbf{x}|| \) \hspace{1cm} b) \(f(\mathbf{x}) = x_1^{x_2} + x_1^{x_3} \) \hspace{1cm} c) \(f(\mathbf{x}) = x_1^{(x_2+x_3)} \)

d) \(f(\mathbf{x}) = \sin(x_1 + x_2) \) \hspace{1cm} e) \(f(\mathbf{x}) = \sin(x_1 + ax_2) \)
Exercise 3.20 Build a function \(f : \mathbb{R}^2 \to \mathbb{R} \), which generates roughly the following graph:

\[
\text{Plot3D}[f[x,y], \{x,-5,5\}, \{y,-5,5\}, \text{PlotPoints} \to 30]
\]

Exercise 3.21 Calculate the Jacobian matrix of the function
\[
f(x_1, x_2, x_3) = \left(\frac{\sqrt{x_1 x_2 x_3}}{\sin(x_1 x_2 x_3)} \right).
\]

Exercise 3.22 For \(f(x, y) = \left(\frac{\sqrt{x y}}{\sin(e^x + e^y)} \right) \), find the tangent plane at \(x_0 = \left(\frac{1}{2} \right) \).

Exercise 3.23 Draw the graph of the function
\[
f(x, y) = \begin{cases} y(1 + \cos \frac{\pi x}{y}) & \text{for } |y| > |x| \\ 0 & \text{else} \end{cases}
\]
Show that \(f \) is continuous and partially differentiable in \(\mathbb{R}^2 \), but not in 0.

Exercise 3.24 Calculate the gradient of the function \(f(x, y) = \frac{x^2 + y^2}{1 + x^4 + y^4} \) and draw it as an arrow at different places in a contour lines image of \(f \).

Exercise 3.25 The viscosity \(\eta \) of a liquid is to be determined with the formula \(K = 6\pi \eta vr \).
Measured: \(r = 3\text{cm} \), \(v = 5\text{cm/sec} \), \(K = 1000\text{dyn} \). Measurement error: \(|\Delta r| \leq 0.1\text{cm} \), \(|\Delta v| \leq 0.003\text{cm/sec} \), \(|\Delta K| \leq 0.1\text{dyn} \). Determine the viscosity \(\eta \) and its error \(\Delta \eta \).

Extrema

Exercise 3.26 Examine the following functions for extrema and specify whether it is a local, global, or an isolated extremum:

\[
a) \quad f(x, y) = x^3 y^2 (1 - x - y) \\
\star \quad b) \quad g(x, y) = x^k + (x + y)^2 \quad (k = 0, 3, 4)
\]

Exercise 3.27 Given the function \(f : \mathbb{R}^2 \to \mathbb{R} \), \(f(x, y) = (y - x^2)(y - 3x^2) \).

a) Calculate \(\text{grad} f \) and show: \(\text{grad} f(x, y) = 0 \iff x = y = 0 \).

b) Show that \(\text{Hess} f(0) \) is semi-definite and that \(f \) has a isolated minimum on each straight line through 0.
c) Nevertheless, f has not an local extremum at 0 (to be shown!).

Exercise 3.28 Given the functions $\Phi(x, y) = y^2x - x^3$, $f(x, y) = x^2 + y^2 - 1$.

a) Examine Φ for extrema.
b) Sketch all contour lines $h = 0$ of Φ.
c) Examine Φ for local extrema under the constraint $f(x, y) = 0$.

Exercise 3.29 The function

$$f(x, y) = \frac{\sin(2x^2 + 3y^2)}{x^2 + y^2}$$

has at $(0,0)$ a definition gap. This can be remedied easily by defining e.g. $f(0,0) := 3$.

a) Show that f is continuous on all \mathbb{R}^2 except at $(0,0)$. Is it possible to define the function at the origin so that it is continuous?
b) Calculate all local extrema of the function f and draw (sketch) a contour line image (not easy).

c) Determine the local extrema under the constraint (not easy):

i) $x = 0.1$

ii) $y = 0.1$

iii) $x^2 + y^2 = 4$

Exercise 3.30 Show that $\nabla(fg) = g\nabla f + f\nabla g$.

Exercise 3.31 Prove: When searching for an extremum of a function $f(x)$ under an inequality constraint $g(x) \geq 0$, the function $f(x)$ will only have its maximum on the margin $g(x) = 0$ if $\lambda > 0$ in the equation $\nabla L(x, \lambda) = 0$. If $\lambda < 0$, f will be at a minimum on the margin.
4 Statistics and Probability

Based on samples, statistics deals with the derivation of general statements on certain features.\(^1\)

4.1 Recording Measurements in Samples

Discrete feature: finite amount of values.

Continuous feature: values in an interval of real numbers.

Definition 4.1 Let \(X \) be a feature (or random variable). A series of measurements \(x_1, \ldots, x_n \) for \(X \) is called a sample of the length \(n \).

Example 4.1 For the feature \(X \) (grades of the exam Mathematics I in WS 97/98) following sample has been recorded:

1.0 1.3 2.2 2.2 2.5 2.9 2.9 2.9 2.9 2.9 3.0 3.0 3.3 3.3 3.4 3.7 3.9 3.9 4.1 4.7

Let \(g(x) \) be the absolute frequency of the value \(x \). Then

\[h(x) = \frac{1}{n} g(x) \]

is called relative frequency or **empirical density** of \(X \).

<table>
<thead>
<tr>
<th>Grade (X)</th>
<th>Absolute frequency (g(x))</th>
<th>Relative frequency (h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>1.3</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>2.5</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>2.9</td>
<td>7</td>
<td>0.29</td>
</tr>
<tr>
<td>3.0</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>3.3</td>
<td>2</td>
<td>0.083</td>
</tr>
<tr>
<td>3.4</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>3.7</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>3.9</td>
<td>2</td>
<td>0.083</td>
</tr>
<tr>
<td>4.1</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>4.7</td>
<td>1</td>
<td>0.042</td>
</tr>
</tbody>
</table>

If \(x_1 < x_2 < \ldots x_n \), then

\[H(x) = \sum_{t \leq x} h(t) \]

\(^1 \) The content of this chapter is strongly leaned on [GT96]. Therefore, [GT96] is the ideal book to read.
4.1 Recording Measurements in Samples

is the empirical distribution function.

It is apparent from the data that 8.3% of the participating students in the exam Mathematics 1 in WS 97/98 had a grade better than 2.0.

On the contrary, the following statement is an assumption: In the exam Mathematics 1, 8.3% of the students of the HS RV-Wgt achieve a grade better than 2.0. This statement is a hypothesis and not provable.

However, under certain conditions one can determine the probability that this statement is true. Such computations are called statistical induction.

When calculating or plotting empirical density functions, it is often advantageous to group measured values to classes.

Example 4.2 Following frequency function has been determined from runtime measurements of a randomized program (automated theorem prover with randomized depth-first search and backtracking):

In this graphic, at any value \(t_i \in \{1, \ldots, 60000\} \) a frequency in the form of a histogram is shown. One can clearly see the scattering effects due to low frequencies per time value \(t_i \). In the next image, 70 values each have been summarized to a class, which results in 600 classes overall.
Summarizing 700 values each to a class one obtains 86 classes as shown in the third image. Here, the structure of the frequency distribution is not recognizable anymore.

The amount ℓ of the classes should neither be chosen too high nor too low. In [GT96] a rule of thumb ℓ ≤ √n is given.

4.2 Statistical Parameters

The effort to describe a sample by a single number is fulfilled by following definition:

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

is called **arithmetic mean** or **sample mean** and if \(x_1 < x_2 < \ldots x_n \), then the **sample median** is defined as

\[\tilde{x} = \begin{cases}
 x_{\frac{n+1}{2}} & \text{if } n \text{ odd} \\
 \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2} + 1} \right) & \text{if } n \text{ even}
\end{cases} \]

In the example 4.2, the arithmetic mean is marked with the symbol \(\triangle \). It is interesting that the arithmetic mean minimizes the sum of squares of the distances

\[\sum_{i=1}^{n} (x_i - \bar{x})^2 \]
whereas the median minimizes the sum of the absolute values of the distances

\[\sum_{i=1}^{n} |x_i - \bar{x}| \]

(proof as exercise). Often, one does not only want to determine a mean value, but also a measure for the mean deviation of the arithmetic mean.

Definition 4.3 The number

\[s^2_x := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

is called **sample variance** and

\[s_x := \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]

is called standard deviation

4.3 Multidimensional Samples

If not only grades from Mathematics 1, but for every student the grades of Mathematics 2 and further courses are also considered, one can ask if there is a statistical relationship between the grades of different courses. Therefore, a simple tool, the covariance matrix is introduced.

For a multidimensional variable \((X_1, X_2, \ldots, X_k)\), a \(k\)-dimensional sample of the length \(n\) consists of a list of vectors

\[
(x_{11}, x_{21}, \ldots, x_{k1}), (x_{12}, x_{22}, \ldots, x_{k2}), \ldots, (x_{1n}, x_{2n}, \ldots, x_{kn})
\]

By extension of example 4.1, we obtain an example for 2 dimensions.
If beside the grades of Mathematics 1 \((X)\) the grades \((Y)\) of Mathematics for computer science are considered, one could determine the 2-dimensional variable \((X,Y)\) as shown in the table beside. The question, if the variables \(X\) and \(Y\) are correlated can be answered by the covariance:

\[
\sigma_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]

For the grades above we determine \(\sigma_{xy} = 0.47\). That means that between these 2 variables a positive correlation exists, thus on average, a student being good in Mathematics 1 is also good in Mathematics for computer science. This is also visible on the left of the following two scatter plots.

For the equally distributed random numbers in the right plot \(\sigma_{xy} = 0.0025\) is determined. Thus, the two variables have a very low correlation. If there are \(k > 2\) variables, the data cannot easily be plotted graphically. But one can determine the covariances between two variables each in order to represent them in a covariance matrix \(\sigma\):

\[
\sigma_{ij} = \frac{1}{n-1} \sum_{\ell=1}^{n} (x_{i\ell} - \bar{x}_i)(x_{j\ell} - \bar{x}_j)
\]

The Covariance matrix is symmetric and positive semi-definite. Thus all eigenvalues are real and non-negative. If dependencies among different variables are to be compared, a correlation matrix can be determined:

\[
K_{ij} = \frac{\sigma_{ij}}{s_i \cdot s_j},
\]

Here, all diagonal elements have the value 1.
Appendicitis database of 473 patients

Example 4.3 In a medical database of 473 patients with a surgical removal of their appendix, 15 different symptoms as well as the diagnosis (appendicitis negative/positive) have been recorded.

age:	continuous.
gender_(1=m__2=w):	1,2.
pain_quadrant1_(0=nein__1=ja):	0,1.
pain_quadrant2_(0=nein__1=ja):	0,1.
pain_quadrant3_(0=nein__1=ja):	0,1.
pain_quadrant4_(0=nein__1=ja):	0,1.
guarding_(0=nein__1=ja):	0,1.
rebound_tenderness_(0=nein__1=ja):	0,1.
pain_on_tapping_(0=nein__1=ja):	0,1.
vibration_(0=nein__1=ja):	0,1.
rectal_pain_(0=nein__1=ja):	0,1.
temp_ax:	continuous.
temp_re:	continuous.
leukocytes:	continuous.
diabetes_mellitus_(0=nein__1=ja):	0,1
appendicitis_(0=nein__1=ja):	0,1

The first 3 data records:

26 1 0 0 1 0 1 1 1 0 37.9 38.8 23100 0 1
17 2 0 0 1 0 1 1 1 0 36.9 37.4 8100 0 0
28 1 0 0 1 0 0 0 0 0 0 36.7 36.9 9600 0 1

Correlation matrix for the data of all 473 patients:

The matrix structure is more apparent if the numbers are illustrated as density plot. In the left diagram, bright stands for positive and dark for negative. The right plot shows the absolute values. Here, white stands for a strong correlation between two variables and black for no correlation.

2The data was obtained from the hospital 14 Nothelfer in Weingarten with the friendly assistance of Dr. Rampf. Mr. Kuchelmeister used the data for the development of an expert system in his diploma thesis.

3The first to images have been rotated by 90°. Therefore, the fields in the density plot correspond to the matrix elements.
It is clearly apparent that most of the variable pairs have no or only a very low correlation, whereas the two temperature variables are highly correlated.

4.4 Probability Theory

The purpose of probability theory is to determine the probability of certain possible events within an experiment.

Example 4.4 When throwing a die once, the probability for the event „throwing a six” is \(\frac{1}{6}\), whereas the probability for the event „throwing an odd number” is \(\frac{1}{2}\).

Definition 4.4 Let \(\Omega\) be the set of possible outcomes of an experiment. Each \(\omega \in \Omega\) stands for a possible outcome of the experiment. If the \(w_i \in \Omega\) exclude each other, but cover all possible outcomes, they are called **elementary events**.

Example 4.5 When throwing a die once, \(\Omega = \{1, 2, 3, 4, 5, 6\}\), because no two of these events can occur at the same time. Throwing an even number \(\{2, 4, 6\}\) is not an elementary event, as well as throwing a number lower than 5 \(\{1, 2, 3, 4\}\), because \(\{2, 4, 6\} \cap \{1, 2, 3, 4\} = \{2, 4\} \neq \emptyset\).

Definition 4.5 Let \(\Omega\) be a set of elementary events. \(\bar{A} = \Omega - A = \{\omega \in \Omega|\omega \notin A\}\) is called the **complementary event** to \(A\). A subset \(A\) of \(2^\Omega\) is called **event algebra** over \(\Omega\), if:

1. \(\Omega \in A\).
2. With \(A\), \(\bar{A}\) is also in \(A\).
3. If \((A_n)_{n \in \mathbb{N}}\) is a sequence \(A\), then \(\bigcup_{n=1}^{\infty} A_n\) is also in \(A\).

Every event algebra contains the **sure event** \(\Omega\) as well as the **impossible event** \(\emptyset\). At coin toss, one could choose \(A = 2^\Omega\) and \(\Omega = \{1, 2, 3, 4, 5, 6\}\). Thus \(A\) contains any possible event by a toss.
If one is only interested in throwing a six, one would consider $A = \{6\}$ and $\bar{A} = \{1, 2, 3, 4, 5\}$ only, where the algebra results in $\mathcal{A} = \{\emptyset, A, \bar{A}, \Omega\}$.

The term of the probability should give us an as far as possible objective description of our "believe" or "conviction" about the outcome of an experiment. As numeric values, all real numbers in the interval $[0, 1]$ shall be possible, whereby 0 is the probability for the impossible event and 1 the probability for the sure event.

4.4.1 The Classical Probability Definition

Let $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$ be finite. No elementary event is preferred, that means we assume a symmetry regarding the frequency of occurrence of all elementary events. The probability $P(A)$ of the event A is defined by

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Amount of outcomes favourable to } A}{\text{Amount of possible outcomes}}$$

It is obvious that any elementary event has the probability $1/n$. The assumption of the same probability for all elementary events is called the Laplace assumption. Any elementary event has the probability $1/n$ Laplace assumption.

Example 4.6 Throwing a die, the probability for an even number is

$$P(\{2, 4, 6\}) = \frac{|\{2, 4, 6\}|}{|\{1, 2, 3, 4, 5, 6\}|} = \frac{3}{6} = \frac{1}{2}.$$

4.4.2 The Axiomatic Probability Definition

The classical definition is suitable for a finite set of elementary events only. For infinite sets a more general definition is required.

Definition 4.6 Let Ω be a set and \mathcal{A} an event algebra on Ω. A mapping

$$P : \mathcal{A} \rightarrow [0, 1]$$

is called probability measure if:

1. $P(\Omega) = 1$.
2. If the events A_n of the sequence $(A_n)_{n \in \mathbb{N}}$ are pairwise inconsistent, i.e. for $i, j \in \mathbb{N}$ it holds $A_i \cap A_j = \emptyset$, then

$$P \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i).$$

For $A \in \mathcal{A}$, $P(A)$ is called probability of the event A.

From this definition, some rules follow directly:
Theorem 4.1
1. \(P(\emptyset) = 0 \), i.e. the impossible event has the probability 0.
2. For pairwise inconsistent events \(A \) and \(B \) it holds \(P(A \cup B) = P(A) + P(B) \).
3. For a finite amount of pairwise inconsistent events \(A_1, A_2, \ldots, A_k \) it holds
\[
P\left(\bigcup_{i=1}^{k} A_i \right) = \sum_{i=1}^{k} P(A_i).
\]
4. For two complementary events \(A \) and \(\bar{A} \) it holds \(P(A) + P(\bar{A}) = 1 \).
5. For any event \(A \) and \(B \) it holds \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \).
6. For \(A \subseteq B \) it holds \(P(A) \leq P(B) \).

Proof: as exercise.

4.4.3 Conditional Probabilities

Example 4.7 In the Doggenriedstraße in Weingarten the speed of 100 vehicles is measured. At each measurement it is recorded if the driver was a student or not. The results are as follows:

<table>
<thead>
<tr>
<th>Event</th>
<th>Frequency</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle observed</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Driver is a student ((S))</td>
<td>30</td>
<td>0.3</td>
</tr>
<tr>
<td>Speed too high ((G))</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>Driver is a student and speeding ((S \cap G))</td>
<td>5</td>
<td>0.05</td>
</tr>
</tbody>
</table>

We now ask the following question: Do students speed more frequently than the average person, or than non-students?\(^4\) The answer is given by the probability \(P(G|S) \) for speeding under the condition that the driver is a student.

\[
P(G|S) = \frac{| \text{Driver is a student and speeding} |}{| \text{Driver is a student} |} = \frac{5}{30} = \frac{1}{6}
\]

Definition 4.7 For two events \(A \) and \(B \), the probability for \(A \) under the condition \(B \) (conditional probability) is defined by

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

In example 4.7 one can recognize that in the case of a finite event set the conditional probability \(P(A|B) \) can be treated as the probability of \(A \), when regarding only the event \(B \), i.e. as

\[
P(A|B) = \frac{|A \cap B|}{|B|}
\]

\(^4\) The determined probabilities can only be used for further statements if the sample (100 vehicles) is representative. Otherwise, one can only make a statement about the observed 100 vehicles.
Definition 4.8 If two events A and B behave as

\[P(A|B) = P(A), \]

then these events are called independent.

A and B are independent, if the probability of the event A is not influenced by the event B.

Theorem 4.2 From this definition, for the independent events A and B follows

\[P(A \cap B) = P(A) \cdot P(B) \]

Proof:

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A) \quad \Rightarrow \quad P(A \cap B) = P(A) \cdot P(B)
\]

Example 4.8 The probability for throwing two sixes with two dice is $\frac{1}{36}$ if the dice are independent, because

\[
P(\text{die 1 } \equiv \text{ six}) \cdot P(\text{die 2 } \equiv \text{ six}) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36} = P(\text{die 1 } \equiv \text{ six} \cap \text{die 2 } \equiv \text{ six}),
\]

whereby the last equation applies only if the two dice are independent. If for example by magic power die 2 always falls like die 1, it holds

\[P(\text{die 1 } \equiv \text{ six} \cap \text{die 2 } \equiv \text{ six}) = \frac{1}{6}. \]

4.4.4 The Bayes Formula

Since the equation in definition (4.7) is symmetric in A and B, one can also write

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{as well as} \quad P(B|A) = \frac{P(A \cap B)}{P(A)}.
\]

Rearranging by $P(A \cap B)$ and equating results in the Bayes formula

\[
P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.
\]

Bayes Formula, Example

A very reliable alarm system warns at burglary with a certainty of 99%. So, can we infer from an alarm to burglary with high certainty?

No, because if for example $P(A|B) = 0.99$, $P(A) = 0.1$, $P(B) = 0.001$ holds, then the Bayes formula returns:

\[
P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{0.99 \cdot 0.001}{0.1} = 0.01.
\]
4.5 Discrete Distributions

Definition 4.9 A random variable with finite or countably infinite range of values is called discrete random variable.

Example 4.9 Throwing a die, the number X is a discrete random variable with the values $\{1, 2, 3, 4, 5, 6\}$, this means in the example it holds $x_1 = 1, \ldots, x_6 = 6$. If the die does not prefer any number, then

$$p_i = p(X = x_i) = 1/6,$$

this means the numbers are *uniformly distributed*. The probability to throw a number ≤ 5 is

$$P(X \leq 5) = \sum_{i: x_i \leq 5} p_i = 5/6.$$

In general, one defines

Definition 4.10 The function, which assigns a probability p_i to each x_i of the random variable X is called the discrete density function of X.

Definition 4.11 For any real number x, a defined function

$$x \mapsto P(X \leq x) = \sum_{i: x_i \leq x} p_i$$

is called distribution function of X.

Such as the empirical distribution function, $P(X \leq x)$ is a monotonically increasing step function. Analogous to the mean value and variance of samples are the following definitions.

Definition 4.12 The number

$$E(X) = \sum_i x_i p_i$$

is called expected value. The variance is given by

$$Var(X) := E((X - E(X))^2) = \sum_i (x_i - E(X))^2 p_i$$

whereby $\sqrt{Var(X)}$ is called standard deviation. The covariance of two variables X and Y is given by

$$Cov(X, Y) := E[(X - E(X)) \cdot (Y - E(Y))].$$

It is easy to see that $Var(X) := E(X^2) - E(X)^2$ and that $Cov(X, Y) = E(XY) - E(X)E(Y)$ (exercise).
4.5 Discrete Distributions

4.5.1 Binomial Distribution

Let a soccer player’s scoring probability at penalty kicking be $p = 0.9$. The probability always to score at 10 independent kicks is

$$B_{10,0.9}(10) = 0.9^{10} \approx 0.35.$$

It is very unlikely that the player scores only once, the probability is

$$B_{10,0.9}(1) = 10 \cdot 0.1^{9} \cdot 0.9 = 0.000000009$$

We might ask the question, which amount of scores is the most frequent at 10 kicks.

Definition 4.13 The distribution with the density function

$$B_{n,p}(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

is called **binomial distribution**.

Thus, the binomial distribution indicates the probability that with n independent tries of a binary event of the probability p the result will be x times positive. Therefore, we obtain

$$B_{10,0.9}(k) = \binom{10}{k} 0.1^k \cdot 0.9^{10-k}$$

The following histograms show the densities for our example for $p = 0.9$ as well as for $p = 0.5$.

For the binomial distribution it holds

$$E(X) = \sum_{x=0}^{n} x \cdot \binom{n}{x} p^x (1-p)^{n-x} = np$$

and

$$Var(X) = np(1-p).$$
4.5.2 Hypergeometric Distribution

Let \(N \) small balls be placed in a box. \(K \) of them are black and \(N - K \) white. When drawing \(n \) balls, the probability to draw \(x \) black is

\[
H_{N,K,n}(x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}.
\]

The left of the following graphs shows \(H_{100,30,10}(x) \), the right one \(H_{N,0.3N,10}(x) \). This corresponds to \(N \) balls in the box and 30% black balls. It is apparent, that for \(N = 10 \) the density has a sharp maximum, which becomes flatter with \(N > 10 \).

As expected, the expected value of the hypergeometric distribution is

\[
E(X) = n \cdot \frac{K}{N}.
\]

4.6 Continuous Distributions

Definition 4.14 A random variable \(X \) is called **continuous**, if its value range is a subset of the real numbers and if for the density function \(f \) and the distribution function \(F \) it holds

\[
F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt.
\]

With the requirements \(P(\Omega) = 1 \) and \(P(\emptyset) = 0 \) (see def. 4.6) we obtain

\[
\lim_{x \to -\infty} F(x) = 0 \quad \text{sowie} \quad \lim_{x \to \infty} F(x) = 1.
\]
Definition 4.15 The expected value of a variable X with the density p is

$$E(X) = \int_{-\infty}^{\infty} p(x) x \, dx$$

and the variance of X is $Var(X) := E((X - E(X))^2)$.

Please compare these definitions to those for discrete variables.

4.6.1 Normal Distribution and Central Limit Theorem

The most important continuous distribution for real applications is the normal distribution with the density

$$\varphi_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right).$$

For $\mu = 0$ and $\sigma = 1$ one obtains the standard normal distribution $\varphi_{0,1}$. With $\sigma = 2$ one obtains the flatter and broader density $\varphi_{0,2}$.

Theorem 4.3 For a normally distributed variable X with the density $\varphi_{\mu,\sigma}$ it holds $E(X) = \mu$ and $Var(X) = \sigma^2$.

Example 4.10

Let the waiting times at a traffic light on a country road at lower traffic be uniformly distributed. We now want to estimate the mean waiting time by measuring the waiting time T 200 times.

The empirical frequency of the waiting times is shown opposite in the image. The mean value (●) lies at 60.165 seconds. The frequencies and the mean value indicate a uniform distribution of times between 0 and 120 sec.

Due to the finiteness of the sample, the mean value does not lie exactly at the expected value of 60 seconds. We now might ask the question, if the mean value is reliable, more
precise with what probability such a measured mean differs from the expected value by a certain deviation. This will be investigated regarding the mean value from 200 times as random variable while recording a sample for the mean value. For example, we let 200 people independently measure the mean value from 200 records of the waiting time at a traffic light. We obtain the following result:

The empirical density function of the distribution of the mean value \(\bar{t} \) shows a clear maximum at \(t = 60 \) seconds while steeply sloping at the borders at 0 and 120 seconds. It looks like a normal distribution.

The kind of relation between the distribution of the mean value and the normal distribution is shown by the following theorem:

Theorem 4.4 (Central Limit Theorem) If \(X_1, X_2, \ldots, X_n \) are independent identically distributed random variables with \(\sigma(X_i) < \infty \) and

\[
S_n = X_1 + \ldots + X_n,
\]

then \(S_n \) tends (for \(n \to \infty \)) to a normal distribution with the expected value \(nE(X_1) \) and the standard deviation of \(\sqrt{n\sigma} \). It holds

\[
\lim_{n \to \infty} \sup \{ |S_n(x) - \varphi_{nE(X_1),\sqrt{n\sigma}(X_1)}(x)| : x \in \mathbb{R} \} = 0.
\]

Proof: We only show that the standard deviation of \(S_n \) is \(\sqrt{n\sigma} \):

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} (X_i) = n \text{Var} (X_1).
\]

Thus \(\sigma_n = \sqrt{\text{Var} (\sum_{i=1}^{n} X_i)} = \sqrt{n\sigma} \).

This theorem has some important conclusions:

- The sum of independent identically distributed random variables asymptotically tends to a normal distribution.
- The mean of the \(n \) independent measurements of a random variable is approximately normally distributed. The approximation holds better, the more measurements are made.
- The standard deviation of a sum \(X_1 + \ldots + X_n \) of identically distributed random variables is equal to \(\sqrt{n\sigma(X_1)} \).
Example 4.11

The following diagram shows the (exact) distribution of the mean calculated from \(n \) i.i.d. (independent identically distributed) discrete variables, each uniformly distributed: \(p(0) = p(1) = p(2) = p(3) = p(4) = 1/5 \).

With the help of the central limit theorem we now want to determine the normal distribution of the mean value from example 4.10 in order to compare it with the empirical density of the mean value. The mean value \(\bar{t}_n \) after \(n \) time measurements is

\[
\bar{t}_n = \frac{1}{n} \sum_{i=1}^{n} t_i.
\]

Following theorem 4.4, the sum \(\sum_{i=1}^{n} t_i \) is normally distributed and has the density

\[
\varphi_{nE(T),\sqrt{n}\sigma}(x) = \frac{1}{\sqrt{2\pi}\sqrt{n}\sigma} \exp\left(-\frac{(x - nE(T))^2}{2n\sigma^2} \right)
\]

The mean value \(\bar{t}_n \) has the density \(\varphi_{E(T),\frac{\sigma}{\sqrt{n}}} \). The variance \(\sigma^2 \) of the uniform distribution is still missing.

Definition 4.16 The density of the uniform distribution on the interval \((a, b)\) is

\[
f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{if sonst} \end{cases}
\]

We calculate

\[
E(X) = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{a+b}{2}
\]

\[
Var(X) = E(X^2) - E(X)^2 = \frac{1}{b-a} \int_{a}^{b} x^2 \, dx - \left(\frac{a+b}{2} \right)^2 = \frac{(b-a)^2}{12} \quad (4.2)
\]

Therefore, for the example

\[
\frac{\sigma}{\sqrt{n}} = \frac{(b-a)}{\sqrt{12n}} = \frac{120}{\sqrt{12} \cdot 200} = \sqrt{6}
\]

\(^5\)This is given by the following, easy to proof property of the variance: \(Var(X/n) = 1/n^2 Var(X) \).
Thus, the density of the mean value of the traffic light waiting times should be approximated well by $\varphi_{60,\sqrt{6}}$ as it can be seen in the following image.

Since we now know the density of the mean value, it is easy to specify a symmetric interval in which the mean value (after our 200 measurements) lies with a probability of 0.95. In the image above ($\varphi_{60,\sqrt{6}}$) we have to determine the two points u_1 and u_2, which behave

$$P(u_1 \leq \bar{t} \leq u_2) = \int_{u_1}^{u_2} \varphi_{60,\sqrt{6}}(t) \, dt = 0.95$$

Because of

$$\int_{-\infty}^{\infty} \varphi_{60,\sqrt{6}}(t) \, dt = 1$$

we get

$$\int_{-\infty}^{u_1} \varphi_{60,\sqrt{6}}(t) \, dt = 0.025 \quad \text{und} \quad \int_{-\infty}^{u_2} \varphi_{60,\sqrt{6}}(t) \, dt = 0.975.$$

Graphically, we can find the two points u_1, u_2, searching for the x values to the level 0.025 and 0.975 in the graph of the distribution function of the normal distribution

$$\Phi_{60,\sqrt{6}}(x) = P(X \leq x) = \int_{-\infty}^{x} \varphi_{60,\sqrt{6}}(t) \, dt$$

From the image we derive

$$u_1 \approx 55.2, \quad u_2 \approx 64.8.$$
We now know the following: After our sample of 200 time measurements the expected value of our waiting time t lies in the interval $[55.2, 64.8]$ with a probability of 0.95. This interval is called the confidence interval to the level 0.95. For the normal distribution it is approximately equal to $[\bar{t} - 2\sigma, \bar{t} + 2\sigma]$.

In general, the confidence interval $[u_1, u_2]$ to the level $1 - \alpha$ has the following meaning. Instead of estimating a parameter Θ from sample measurements, we can try to determine an interval, that contains the value of Θ with high probability. For a given number α (in the example above, α was 0.05) two numbers u_1 and u_2 are sought which behave

$$P(u_1 \leq \Theta \leq u_2) = 1 - \alpha.$$

Not to be confused with the confidence interval are the quantiles of a distribution.

Definition 4.17 Let X be a continuous random variable with density f and $\gamma \in (0, 1)$. A value x_{γ} is called γ-quantile, if

$$P(X \leq x_{\gamma}) = \int_{-\infty}^{x_{\gamma}} f(t) \, dt = \gamma.$$

The 0.5 quantile is called median.

4.7 Multidimensional Normal Distribution

Definition 4.18 A Gaussian distribution is fully specified by a D-dimensional mean vector μ and $D \times D$ covariance matrix Σ with the density function

$$p(x; \mu, \Sigma) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right).$$

- That μ is the mean and Σ the covariance matrix of the normal distribution, has to be proven!
- If the variables x_1, \ldots, x_D are all independent, then Σ is diagonal! Why?

6 This result is only exact under the condition that the standard deviation σ of the distribution of t is known. If σ is unknown too, the calculation is more complex.
Examples: Mean Vector and Covariance Matrix

\[\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
\[\mu = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \]
\[\mu = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \]

\[\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \]

\[\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix} \]

\[\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 3 & -0.5 \\ -0.5 & 1 \end{bmatrix} \]

Covariance Matrix Properties

The covariance matrix \(\Sigma \) is symmetric.
4.7 Multidimensional Normal Distribution

- Σ is invertible and Σ^{-1} is symmetric
- All eigenvalues are real
- All eigenvectors are orthogonal
- Eigenvectors point in the direction of principal axes of the ellipsoid.

The covariance matrix Σ is *positive semidefinite*

- $\Rightarrow x^T \Sigma x > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$
- All eigenvalues are positive
- Σ is invertible and Σ^{-1} is positive definite

Diagonalization of the Covariance Matrix

Let $u_1 \ldots u_D$ the eigenvectors of Σ. Then the transformation $x \mapsto y$ with

$$y_i = u_i^T (x - \mu)$$

makes all variables y_i pairwise independent with diagonal covariance matrix Σ' and zero mean.

Product of Gaussian Distributions

The *product* of two Gaussian distributions is also a Gaussian:

$$N(\mu_a, \Sigma_a) \cdot N(\mu_b, \Sigma_b) = z_c N(\mu_c, \Sigma_c)$$

with

$$\mu_c = \Sigma_c \left(\Sigma_a^{-1} \mu_a + \Sigma_b^{-1} \mu_b \right) \quad \text{and} \quad \Sigma_c = \left(\Sigma_a^{-1} + \Sigma_b^{-1} \right)^{-1}$$

Marginal Gaussian Distribution

The *marginal distribution* for a joint random variable $p(x, y)$ is defined as

$$p(x) = \int p(x, y) \, dy.$$

Given a joint distribution

$$p(x, y) = N \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix} \right),$$

the *marginal Gaussian distribution* is given by

$$p(x) = N(a, A)$$
Conditional Gaussian Distribution

The *conditional distribution* is defined as

\[p(x|y) = \frac{p(x, y)}{p(y)}. \]

Given a joint distribution

\[p(x, y) = \mathcal{N} \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix} \right) \]

the *conditional Gaussian distribution* is given by

\[p(y|x) = \mathcal{N} \left(b + CA^{-1}(x - a), B - CA^{-1}C^T \right) \]

Marginal & Conditional Gaussian Distribution

![Graph showing conditional and marginal Gaussian distributions](image)

4.8 Random Numbers

4.8.1 Applications of Random Numbers

- Randomized Algorithms
- Stochastic Simulation (Monte-Carlo simulation)
- Cryptography (e.g., key generation, one-time pad)

Literature:

Don Knuth “The Art of Computer Programming” volume 2

In [Mau92] U. Maurer defines:
4.8 Random Numbers

Definition 4.19 A random bit generator is a device that is designed to output a sequence of statistically independent and symmetrically distributed binary random variables, i.e., designed to be the implementation of a so-called binary symmetric source (BSS). In contrast, a pseudo-random bit generator is designed to deterministically generate a binary sequence that only appears as if it were generated by a BSS.

Definition 4.20 A binary variable is symmetrically distributed if the probability for both values is exactly $1/2$.

Alternative Definition:
A sequence is random, if for any length ℓ the distribution of all strings of length ℓ has maximum entropy.

Definition 4.21 A Pseudo Random Number Generator (PRNG) is an algorithm that (after entering one or more seed numbers) deterministically generates a sequence of numbers.

For cryptographic applications very problematic!

Alternative:
Use of physical random events such as thermal noise or radioactive Decay: True Random Numbers

Theory
- Till recently it was unknown if hidden parameters are describing a seemingly random process deterministically.
- Physicists have proven that there are real random processes (\rightarrow Bell inequality).

4.8.2 Kolmogorov Complexity
- If a (large) file can be compressed, then the content is not random.
- True random numbers can not be compressed!
- Is $\pi = 3.1415926\ldots$ random?
- No, because $\pi = 3.1415926\ldots$ can be compressed
- Computer program can calculate any number of digits of π!

Definition 4.22 The Kolmogorov complexity of a (infinite) sequence is the length of a shortest program, that can compute (enumerate) the sequence’s terms [LV88].

- π has finite Kolmogorov complexity.
• Any sequence of random numbers has infinite Kolmogorov complexity!
• Unsuitable in practice, since Kolmogorov complexity is not computable!
• Each PRNG only produces sequences of finite Kolmogorov complexity. Such sequences are not random

4.8.3 Compression of Random Number Sequences

Theorem 4.5 No program can compress any files of at least \(n \)-bit \((n \geq 0)\) without loss.

Example 4.12

<table>
<thead>
<tr>
<th>length (n)</th>
<th>bit sequences of length (n)</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>00, 01, 10, 11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>000, 001, 010, 011, 100, 101, 110, 111</td>
<td>8</td>
</tr>
</tbody>
</table>

8 sequences of length 3, but only seven shorter sequences!

Proof: Suppose a program could do it. We compress with it (only!) all files of \(n\)-bit. The compressed files are not exceeding the size of \(n-1\) bits. The number of compressed files of size from 0 to \(n-1\) bits is
\[
1 + 2 + 4 + 8 + \ldots + 2^{n-1} = 2^n - 1.
\]

Because there are \(2^n\) files of size \(n\) bits, at least two files have to be compressed to the same file. Thus, the compression is not lossless. \(\square\)

4.8.4 Pseudo Random Number Generators

Definition 4.23 Linear Congruence Generators are defined recursively by
\[
x_n = (ax_{n-1} + b) \mod m.
\]
with parameters \(a\), \(b\) and \(m\).

• [Sch96] recommends for 32-bit integers: \(a = 7141\), \(b = 54773\) and \(m = 259200\).
• The period can not exceed \(m\). Why? (see exercise 4.20)

Theorem 4.6 The functional characteristics of a congruence generator lead to the following upper bounds for the period:

<table>
<thead>
<tr>
<th>recursion scheme</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n = f(x_{n-1}) \mod m)</td>
<td>(\leq m)</td>
</tr>
<tr>
<td>(x_n = f(x_{n-1}, x_{n-2}) \mod m)</td>
<td>(\leq m^2)</td>
</tr>
<tr>
<td>(x_n = f(x_{n-1}, x_{n-2}, x_{n-3}) \mod m)</td>
<td>(\leq m^3)</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>
Proof: With the modulus \(m \) we have only \(m \) different values for \(x_n \). Since \(f \) is deterministic, if \(x_n = f(x_{n-1}) \) mod \(m \), after the first repeated value, all succeeding values will be repeated as well. Thus the period is \(\leq m \). If \(f \) depends on two previous values, then there are \(m^2 \) combinations. Thus the period is bounded by \(m^2 \) and so on. \(\Box \)

Apparently, the more predecessors \(x_n \) depends on, the longer the period can become. So it seems natural to use as many predecessors as possible. We try it with the sum of all predecessors and get

\[x_0 = a, \quad x_n = \left(\sum_{i=0}^{n-1} x_i \right) \text{ mod } m, \]

which may even lead to a non-periodic sequence, because the number of used predecessors gets bigger with increasing \(m \).

Let us first consider the specified sequence with \(x_0 = 1 \) non-modular:

\[1, 1, 2, 4, 8, 16, 32, 64, 128, 256, \ldots \]

Obviously this is an exponential sequence, hence

Theorem 4.7 The recursively defined formula \(x_0 = 1, x_n = \sum_{i=0}^{n-1} x_i \) for \(n \geq 1 \) is equivalent to \(x_n = 2^{n-1} \).

Proof: For \(n \geq 2 \) we have

\[x_n = \sum_{i=0}^{n-1} x_i = x_{n-1} + \sum_{i=0}^{n-2} x_i = x_{n-1} + x_{n-1} = 2 \cdot x_{n-1}. \]

For \(n = 1 \), \(x_1 = x_0 = 1 \). Now it can be shown easily by induction, that \(x_n = 2^{n-1} \) for \(n \geq 1 \) (see exercise 4.20). \(\Box \)

For the modular sequence \(x_0 = 1, x_n = \left(\sum_{i=0}^{n-1} x_i \right) \text{ mod } m \) is equivalent to \(x_n = 2^{n-1} \text{ mod } m \) for \(n \geq 1 \). Thus \(x_n \) depends only on \(x_{n-1} \) and \(m \) is the periods upper bound.

The period of the sequence is even \(\leq m - 1 \), because when zero is reached, the result will remain zero.

Not only the period is important for the quality of a PRNG. The symmetry of the bits should as well be good.

4.8.5 The Symmetry Test

In principle, it is easy to test a bit sequence on symmetry. The mean of an \(n \)-bit sequence has to be calculated

\[M(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \]

and compared with the expected value \(E(X) = 1/2 \) of a true random bit sequence. If the deviation of the mean from the expected value is small enough, the sequence passes the test.

Now we want to calculate a threshold for the tolerable deviation. The expected value of a true random bit \(X \) is \(E(X) = 1/2 \) and also its standard deviation \(\sigma(X) = 1/2 \) (see exercise 4.21). The mean of \(n \) true random numbers, will deviate less from the expected
value, the larger n gets. The central limit theorem (Theorem 4.4) tells us that for n independent identically distributed random variables X_1, X_2, \ldots, X_n with standard deviation σ, the standard deviation of the sum $S_n = X_1 + \ldots + X_n$ is equal to $\sqrt{n}\sigma$. Thus, the standard deviation σ_n of the mean $M(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$ of n random bits is

$$\sigma_n = \frac{1}{n} \sqrt{n}\sigma(X_1) = \frac{1}{\sqrt{n}} \sigma(X_1)$$

Because for random bits $\sigma(X_i) = 1/2$, we get

$$\sigma_n = \frac{1}{2\sqrt{n}}.$$

A normally distributed random variable has a value in $[\mu - 2\sigma, \mu + 2\sigma]$ with probability 0.95. This interval is the confidence interval to the level 0.95. We define the test of randomness as passed, if the mean of the bit sequence is in the interval $[1/2 - 2\sigma_n, 1/2 + 2\sigma_n]$.

The BBS Generator (Blum Blum Shub)

Polynomial congruential generators of the form

$$x_n = (a_k x_{n-1}^k + a_{k-1} x_{n-1}^{k-1} + \ldots + a_0) \mod m.$$

can be cracked. Therefore, it is natural to look for better generators. A PRNG that generates bits of very high quality, is the so-called BBS generator [BBS86].

BBS generator [BBS86]:

1. Choose primes p and q with $p \equiv q \equiv 3 \mod 4$.
2. Calculate $n = p \cdot q$ and choose a random number s with $\gcd(s, n) = 1$.
3. Calculate the Seed $x_0 = s^2 \mod n$.
4. Repeatedly compute (starting with $i = 1$)

 $$x_i = \ (x_{i-1})^2 \mod n$$
 $$b_i = x_i \mod 2,$$

 output b_i as the i-th random bit.

- BBS is considered very good, but:
- A BBS operated One-Time-Pad is as safe as a cipher with a key length of $|s|$.

4.8.6 True Random Numbers

- Special Hardware
 - Physical Noise Source, AD converter, Amplifier, Filter, Test(?)
 - Special Hardware (Thermal Noise) for test purposes
 - Special Hardware for cryptographic applications are too expensive
- Intel: thermal noise of a resistor in the Pentium III processor
4.9 Principal Component Analysis (PCA)

- Frequency: 75000 bits per second [JK99]
- Maxtor: Noise of IDE Hard Drives
 - Frequency: 835 200 bits per second [ES00]

The Neumann Filter

John von Neumann, 1963, invented the following formula for repairing asymmetric sequences:

\[f : \begin{array}{c c c c c}
00 & \mapsto & \epsilon \\
11 & \mapsto & \epsilon \\
01 & \mapsto & 0 \\
10 & \mapsto & 1,
\end{array} \]

\(\epsilon = \) the empty character string

Example 4.13 \(1001101011100101110 \) \(\mapsto \) \(10011 \)

Example 4.14 \(1111111111111111111 \) \(\mapsto \) \(\epsilon \)

Example 4.15 \(10101010101010101010 \) \(\mapsto \) \(1111111111 \)

Theorem 4.8 If consecutive bits in a long \((n \to \infty)\) bit sequence are statistically independent, then after application of the Neumann Filter they are symmetrically distributed. The length of the bit sequence is shortened by the factor \(p(1 - p) \).

Proof: If in a sequence the bits are independent and with probability \(p \) take the value “1”, then the probability for a pair of “01” equals \(p(1 - p) \). The probability for the pair “10” is also \(p(1 - p) \). Thus, the probability \(p_n \) for the value “1” after the application of the Neumann Filter is given by

\[p_n = \frac{p(1-p)}{2p(1-p)} = \frac{1}{2}. \]

For the proof of the reduction factor we refer to exercise 4.25.

4.9 Principal Component Analysis (PCA)

In multidimensional data sets quite often some variables are correlated or even redundant, as shown in the 2-dim. scatterplot beside. We may then for example reduce the dimensionality of the data. We follow chapter 12 in [Bis06].

Please note that the PCA algorithm described here is a linear method that projects the data on a linear subspace. Nonlinear projections can be obtained with Kernel PCA.
Given is a set of data points \((x_1, \ldots, x_N) \), each \(x_i \) being a vector of \(D \) dimensions. We want to project the points into a lower dimensional space with \(M < D \) dimensions. We start with looking for the direction in \(D \)-dim. space with highest variance of the data. Let \(\mathbf{u}_1 \) a unit vector in this direction, i.e. \(\mathbf{u}_1^T \mathbf{u}_1 = 1 \). We project the data points \(x_n \) onto this direction yielding the scalar value \(\mathbf{u}_1^T x_n \).

The mean of the projected data is

\[
\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_1^T x_n = \mathbf{u}_1^T \bar{x}
\]

and their variance

\[
\frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{u}_1^T x_n - \mathbf{u}_1^T \bar{x})^2 = \mathbf{u}_1^T S \mathbf{u}_1.
\]

To see this, the definition of the covariance of two scalar variables \(x_i \) and \(x_j \) is

\[
S_{ij} = \frac{1}{N-1} \sum_{n=1}^{N} (x_{ni} - \bar{x}_i)(x_{nj} - \bar{x}_j)
\]

where \(x_{ni} \) is the \(i \)-th component of the \(n \)-th data sample. The covariance matrix is

\[
S = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T.
\]

Thus

\[
\mathbf{u}_1^T S \mathbf{u}_1 = \frac{1}{N-1} \sum_{n=1}^{N} \mathbf{u}_1^T (x_n - \bar{x})(x_n - \bar{x})^T \mathbf{u}_1 = \frac{1}{N-1} \sum_{n=1}^{N} \mathbf{u}_1^T (x_n - \bar{x}) \mathbf{u}_1^T (x_n - \bar{x})
\]

\[
= \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{u}_1^T x_n - \mathbf{u}_1^T \bar{x})(\mathbf{u}_1^T x_n - \mathbf{u}_1^T \bar{x}) = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{u}_1^T x_n - \mathbf{u}_1^T \bar{x})^2
\]
In order to find the vector \(u_1 \) which produces maximum variance \(u_1^T S u_1 \), we will maximize this quantity by deriving it w.r.t. \(u_1 \). To prevent \(\| u_1 \| \to \infty \) we have to use the normalization condition \(u_1^T u_1 = 1 \) as a constraint, which yields the Lagrangian

\[
L = u_1^T S u_1 + \lambda_1 (1 - u_1^T u_1).
\]

and the necessary condition for a maximum is

\[
\frac{\partial L}{\partial u_1} = 2 S u_1 - 2 \lambda_1 u_1 = 0,
\]

yielding

\[
S u_1 = \lambda_1 u_1,
\]

which is the eigenvalue equation for the covariance matrix \(S \). Obviously, if we choose \(\lambda_1 \) as the largest eigenvalue, we will obtain highest variance, i.e.

\[
u_1^T S u_1 = u_1^T \lambda_1 u_1 = \lambda_1.
\]

From this we now can conclude

\textbf{Theorem 4.9} The variance of the data points is maximal in the direction of the eigenvector \(u_1 \) to the largest eigenvalue of the covariance matrix \(S \). This maximal eigenvector is called the \textbf{principal component}.

Application to the above data points yields the two eigenvectors

\[
\begin{align*}
u_1 &= \begin{pmatrix} -0.788 \\ 0.615 \end{pmatrix} \\
u_2 &= \begin{pmatrix} -0.615 \\ -0.788 \end{pmatrix}
\end{align*}
\]

with the corresponding eigenvalues \(\lambda_1 = 0.128 \) and \(\lambda_2 = 0.011 \). The graph shows that the principal component \(u_1 \) points in the direction of highest variance.

After finding the direction with highest variance, we partition the \(D \)-dimensional space into \(u_1 \) and its orthogonal complement. In the resulting \((D - 1) \)-dimensional space we again determine the principal component. This procedure will be repeated until we have \(M \) principal components. The simple result is

\textbf{Theorem 4.10} The eigenvectors \(u_1 \ldots u_M \) to the \(M \) largest eigenvalues of \(S \) determine the \(M \) orthogonal directions of highest variance of the data set \((x_1, \ldots, x_N) \).

\textbf{Proof:} by induction:
For $M = 1$ we refer to theorem 4.9. Now assume, the M directions with highest variance are already determined. Since u_{M+1} has to be orthogonal to $u_1 \ldots u_M$, we will require the constraints

$$u_{M+1}^T u_1 = u_{M+1}^T u_2 = \ldots = u_{M+1}^T u_M = 0.$$

Similarly to the above procedure we will determine u_{M+1} by maximizing the variance of the data in the remaining space. As above, the variance of the data in the direction u_{M+1} is $u_{M+1}^T S u_{M+1}$. Together with the above M orthogonality constraints and the normality constraint $u_{M+1}^T u_{M+1} = 1$ we have to find a maximum of the new Lagrangian

$$L = u_{M+1}^T S u_{M+1} + \lambda_{M+1}(1 - u_{M+1}^T u_{M+1}) + \sum_{i=1}^{M} \eta_i u_{M+1}^T u_i$$

with respect to u_{M+1}. It turns out (exercise 4.29) that the solution u_{M+1} has to fulfill

$$S u_{M+1} = \lambda_{M+1} u_{M+1}$$

i.e. it is again an eigenvector of S. Obviously we have to select among the $D - M$ not yet selected eigenvectors the one with the largest eigenvalue.

How to apply PCA for Dimensionality reduction?

1. Compute covariance matrix S of data.
2. Determine eigenvalues of S.
3. Sort the eigenvalues: $\lambda_1 \ldots \lambda_D$.
4. Select the M largest eigenvalues $\lambda_1 \ldots \lambda_M$.
5. Set up the matrix of eigenvectors $V_{red} = (u_1, \ldots, u_M)$.
6. Compress (new) data vectors: $y = V_{red}^T \cdot x$.
7. $V_{red}^T \cdot x$ is the projection (transformation) from D-dimensional space on M-dimensional subspace.

Can the compressed data be reconstructed?

Not exactly, but approximately:

$$\hat{x} = V_{red} \cdot y$$

Transformation from M-dim. subspace to D-dim. space.
4.9 Principal Component Analysis (PCA)

Application to LEXMED data

After normalization of the data to the interval [0, 1] we obtain the eigenvalues:

\[0.47 \ 0.24 \ 0.19 \ 0.16 \ 0.16 \ 0.11 \ 0.10 \ 0.039 \ 0.036 \ 0.023 \ 0.023 \ 0.016 \ 0.016 \ 0.01 \ 0.004 \]

Due to the step after the 7-th largest eigenvalue, a transformation of the data to the 7-dimensional space spanned by the eigenvectors of the 7 largest eigenvalues may be considered. If for visualization we plot the data to the two principal components (eigenvectors to the two largest eigenvalues), we get for the raw data the left and for the normalized data the right diagram:

The corresponding two eigenvectors for the raw data are:

\[(-1.0, 0.2, -0.03, -0.02, -0.003, -0.06, -0.3, -0.04, -0.2, -0.2, -0.1, -3, -4, -10000, -0.004) \cdot 10^{-4} \]

\[(100, -0.10, 0.16, 0.05, -0.04, 0.17, 0.27, 0.06, 0.09, 0.08, -0.03, 3.34, 5.66, -0.02, 0.17) \cdot 10^{-2} \]

The first vector projects on the leukocyte value and the second on a combination of the age and the fever values. Why?
4.9.1 Applications of PCA

- Dimensionality reduction
- Data compression
- Extraction of features from pixel images
- Data visualization

An Image compression example

- 5000 gray-scale images with $32 \times 32 = 1024$ pixels each.
- Application of PCA with 100 principal components.
- i.e. projection on 100-dimensional subspace.
- Transformation of compressed images back into original space.

100 Images

![Original and Recovered Images](image-url)

Bill Clinton

From Andrew Ng’s excellent lecture “Machine Learning”: ml-class.org.
36 Principal components

Scalability

- Would this work with 1 Megapixel images also?
- No! Why?
- $D = 10^6$ dimensional space!
- 5000 images = 5000 data points in 10^6-dimensional space.
- $N = 5000$ data points define a 4999-dimensional hyperplane.
- Thus we need: $M \ll N - 1 = 4999$.
- Otherwise: Underdetermined problem!
- Compression by a factor $\gg 10^6/5000 = 200$.

Back to Andrew Ng’s Example

- $D = 1024$.
- 5000 images = 5000 data points in 1024-dimensional space.
- 5000 points in $M = 100$ dim. space.
- $M = 100 \ll 4999 = N - 1$.
- Structure of data can be conserved.
- Compression by a factor $1024/100 \approx 10$.
4.10 Estimators

Estimators & Properties

This section covers the estimation of unknown parameters. As an example, the sample mean as defined in 4.2 is an estimator for the expected value as defined in 4.12. We will now define the notion of an estimator and some desirable properties thereof.

Most often a parameterized distribution is given, but with unknown true parameters. The goal is to estimate these parameters with the help of samples \(x \) (from the true distribution). We collect all parameters of interest in the variable \(\gamma \). We start with the definition of an estimator followed by some easy examples.

An estimator \(T_\gamma \) is used to infer the value of an unknown parameter \(\gamma \) in a statistical model. It is a function defined as:

\[
T_\gamma : \mathcal{X} \mapsto \Gamma
\]

where \(\mathcal{X} \) is a sample space with elements \(x := \{x_1, \cdots, x_n\} \in \mathcal{X} \).

Normally we will not be able to estimate the true parameter exactly and so we have to define some properties that assures a certain quality of the estimations found with the help of \(T \). The true parameter is unknown and so we have to look for other reasonable criteria. For example the expected value of the estimator should be the parameter to estimate.

Desirable properties are:

- **unbiasedness**: \(\mathbb{E}(T_\gamma) = \gamma \)
- **minimum variance**: An unbiased estimator \(T_\gamma^* \) has minimum variance if

\[
\text{Var}(T_\gamma^*) \leq \text{Var}(T_\gamma)
\]

for all unbiased estimators \(T \).

Sample Mean & Sample Variance

We can formulate the calculation of the sample mean and variance in terms of estimators:

Let the \(x_j \) be samples from a distribution with mean \(\mu \) and variance \(\sigma^2 \)

- The function \(\bar{x} : \mathbb{R}^n \mapsto \mathbb{R} \)

\[
\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j
\]

is called the **sample mean**

- The function \(s^2 : \mathbb{R}^n \mapsto \mathbb{R} \)

\[
s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2
\]

is called the **sample variance**

Example: Sample Mean & Sample Variance

Sampling from a Gaussian distribution with mean \(\mu = 5 \) and variance \(\sigma^2 = 2 \). The black line is a plot of the true Gaussian and the green line is a Gaussian were the mean and the variance is calculated with \(\bar{x} \) and \(s^2 \) respectively.
As expected the estimation becomes better the more samples are used. As mentioned before there are some properties we want for an estimator to hold. We are going to proof the unbiasedness and leave the proof for the minimum variance criterion as an exercise to the reader.

Unbiasedness

Theorem 4.11 The sample mean is an unbiased estimator for the expected value.

Proof:

\[
\mathbb{E}(\bar{x}) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}(x_j) = \frac{1}{n} \sum_{j=1}^{n} \mu = \mu
\]

□

Theorem 4.12 The sample variance is an unbiased estimator for the variance.

Proof: We can rewrite:

\[
s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \mu)^2 - \frac{n}{n-1}(\bar{x} - \mu)^2.
\]

Then

\[
\mathbb{E}(s^2) = \frac{1}{n-1} \sum_{j=1}^{n} \mathbb{E}((x_j - \mu)^2) - \frac{n}{n-1} \mathbb{E}((\bar{x} - \mu)^2)
\]

\[
= \frac{1}{n-1} \sum_{j=1}^{n} \text{Var}(x_j) - \frac{n}{n-1} \text{Var}(\bar{x})
\]

\[
= \frac{n}{n-1} \sigma^2 - \frac{n}{n-1} \sigma^2 = \frac{n-1}{n-1} \sigma^2 = \sigma^2
\]

□

Please note that \(\frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})^2 \) is a biased estimator for the variance!
Variance of Sample Mean and Sample Variance

We can not only calculate the expected value of estimators, but also their variance. It is an exercise to proof the following:

The variance $\text{Var}(\bar{x})$ of the estimator \bar{x} is given by

$$\text{Var}(\bar{x}) = \frac{1}{n}\sigma^2$$

and the variance $\text{Var}(s^2)$ of the empirical variance is

$$\text{Var}(s^2) = \frac{2}{n-1}\sigma^4$$

Expectations and Covariances

The expectation of some function $f(x)$ under a probability distribution $p(x)$ is given by

$$\mathbb{E}(f) = \int p(x)f(x) \, dx$$

and the variance of $f(x)$ is defined by

$$\text{Var}(f) = \mathbb{E}((f(x) - \mathbb{E}(f(x)))^2)$$
$$= \mathbb{E}(f(x)^2) - \mathbb{E}(f(x))^2$$

For two random variables x and y, the covariance is defined by

$$\text{Cov}(x,y) = \mathbb{E}((x - \mathbb{E}(x))(y - \mathbb{E}(y)))$$
$$= \mathbb{E}(xy) - \mathbb{E}(x)\mathbb{E}(y)$$

Covariance and Independence

Remember, that for two independent variables x and y we have $p(x,y) = p(x) \cdot p(y)$. Thus

$$\mathbb{E}(xy) = \int \int p(x,y)xy \, dx \, dy = \int \int p(x)p(y)xy \, dx \, dy$$
$$= \int p(y)y \, dy \int p(x)x \, dx = \mathbb{E}(x)\mathbb{E}(y)$$

and we get for independent variables

$$\text{Cov}(x,y) = 0$$

Note: Independence of two variables implies that the variables are uncorrelated. The reverse however is not true!
Theorem 4.13 For n variables X_1, \ldots, X_n we have

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} (X_i) + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov} (X_i, X_j)$$

Proof:

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \mathbb{E} \left(\left(\sum_{i=1}^{n} X_i \right)^2 \right) - \mathbb{E} \left(\sum_{i=1}^{n} X_i \right)^2$$

$$= \mathbb{E} \left(\sum_{i=1}^{n} X_i^2 + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j \right) - \mathbb{E} \left(\sum_{i=1}^{n} X_i \right)^2$$

$$= \sum_{i=1}^{n} \mathbb{E} (X_i^2) + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E} (X_i X_j) - \mathbb{E} \left(\sum_{i=1}^{n} X_i \right)^2$$

$$= \sum_{i=1}^{n} \text{Var} (X_i) + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov} (X_i, X_j)$$

□

Theorem 4.14 For n uncorrelated variables we have

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} (X_i)$$

Proof: As exercise. □

4.11 Exercises

Basic Statistics and Probability

Exercise 4.1

a) Show that the arithmetic mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ minimizes the sum of the squared distances $\sum_{i=1}^{n} (x_i - \bar{x})^2$.
b) Show that the median
\[\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{if } n \text{ odd} \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right) & \text{if } n \text{ even} \end{cases} \]
minimizes the sum of the absolute values of the distances \(\sum_{i=1}^{n} |x_i - x| \). (Hint: consider by an example how \(\sum_{i=1}^{n} |x_i - x| \) is going to change if \(x \) deviates from the median.)

Exercise 4.2 As thrifty, hard-working Swabians we want to try to calculate whether the German lottery is worth playing. In German lottery, 6 balls are drawn out of 49. The 49 balls are numbered from 1-49. A drawn ball is not put back into the pot. In each lottery ticket field, the player chooses 6 numbers out of 49.

a) Calculate the number of possible draws in the lottery (6 of 49 / saturday night lottery), which result in having (exactly) three correct numbers. Then, what is the probability to have three correct numbers?

b) Give a formula for the probability of achieving \(n \) numbers in the lottery.

c) Give a formula for the probability of achieving \(n \) numbers in the lottery with the bonus number (the bonus number is determined by an additionally drawn 7th ball).

d) What is the probability that the (randomly) drawn "super number" (a number out of \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}) equals the last place of the serial number of the lottery ticket?

e) Calculate the average lottery prize if the following sums are payed out (s.n.: super number, b.n.: bonus number):

<table>
<thead>
<tr>
<th>Winning class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct numbers</td>
<td>6 with s.n.</td>
<td>6 without s.n.</td>
<td>5 with b.n.</td>
<td>4</td>
<td>3 with b.n.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Prize (29.11.1997)</td>
<td>12.085.335,80</td>
<td>1.382.226,80</td>
<td>172.778,30</td>
<td>12.905,90</td>
<td>82,30</td>
<td>12.10</td>
<td></td>
</tr>
<tr>
<td>Prize (22.11.1997)</td>
<td>7.938.655,30</td>
<td>3.291.767,70</td>
<td>141.075,70</td>
<td>11.018,40</td>
<td>79,20</td>
<td>8,70</td>
<td></td>
</tr>
<tr>
<td>Prize (15.11.1997)</td>
<td>3.988.534,00</td>
<td>2.215.852,20</td>
<td>117.309,80</td>
<td>9.537,30</td>
<td>60,80</td>
<td>8,10</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 4.3 Show that for the variance the following rule holds
\[\text{Var}(X) = E(X^2) - E(X)^2. \]

Exercise 4.4 Prove the following propositions:

a) For pairwise inconsistent events \(A \) and \(B \) it holds \(P(A \cup B) = P(A) + P(B) \). (Hint: consider, how the second part of definition 4.6 could be applied on (only) 2 events.)

b) \(P(\emptyset) = 0 \), i.e. the impossible event has the probability 0.

c) For two complementary events \(A \) and \(\bar{A} \) it holds \(P(A) + P(\bar{A}) = 1 \).

*d) For arbitrary events \(A \) and \(B \) it holds
\[P(A \cup B) = P(A) + P(B) - P(A \cap B). \]

e) For \(A \subseteq B \) it holds \(P(A) \leq P(B) \).

Exercise 4.5 Prove:

a) The covariance matrix is symmetric, i.e. \(\forall_{i,j} \quad \sigma_{ij} = \sigma_{ji} \).

*b) The values in the correlation matrix are normalized, i.e. \(\forall_{i,j} \quad -1 \leq K_{ij} \leq 1 \).

Exercise 4.6 Calculate the probability distribution of the mean of \(n \) independent identically distributed discrete random variables \(X_1, \ldots, X_n \), with
\[p(X_i = 0) = p(X_i = 1) = p(X_i = 2) = p(X_i = 3) = p(X_i = 4) = 1/5 \]
for \(n = 1, 2, 3, 4 \).

Exercise 4.7 Show that

a) \(E[\bar{x}] = \mu \).

**b) \(\text{Var}(\bar{x}) = \frac{1}{n} \sigma^2 \) if all measurements \(x_i \) in \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \) are uncorrelated and identically distributed. (This proposition is slightly different from the central limit theorem, since here we assume only that the variables are uncorrelated. We do not assume the independance.)

c) For the sample variance it holds:

\[
s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \mu)^2 - \frac{n}{n-1} (\bar{x} - \mu)^2.
\]

Exercise 4.8 The following are the percentages of ash content in 12 samples of coal found in close proximity:

9.2, 14.1, 9.8, 12.4, 16.0, 12.6, 22.7, 18.9, 21.0, 14.5, 20.4, 16.9

Find the

a) sample mean

b) sample standard deviation of these percentages.

Exercise 4.9 Five students wrote examinations in Mathematics and Physics. The results are:

<table>
<thead>
<tr>
<th></th>
<th>stud. 1</th>
<th>stud. 2</th>
<th>stud. 3</th>
<th>stud. 4</th>
<th>stud. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td># points in mathematics</td>
<td>42</td>
<td>27</td>
<td>74</td>
<td>97</td>
<td>55</td>
</tr>
<tr>
<td># points in physics</td>
<td>33</td>
<td>44</td>
<td>80</td>
<td>84</td>
<td>62</td>
</tr>
</tbody>
</table>

a) Determine the mean of the results in the mathematics examination.

b) What correlation coefficient could we expect between the results in both exams? Don’t do any calculations but give an explanation!

c) The standard deviation of the results is 27.377 in mathematics and 22.154 in physics. What is the correlation coefficient between the results in both courses if their covariance is 543.75?

d) Assuming, the results are uniformly distributed with an expected value \(E(X) = 50 \) and a standard deviation \(\sigma = 28.868 \), find the interval of possible results by determining the parameters a and b of the distribution.

Exercise 4.10 Each of two cabinets identical in appearance has 2 drawers. Cabinet A contains a silver coin in each drawer, and cabinet B contains a silver coin in one of its drawers and a gold coin in the other. A cabinet is randomly selected, one of its drawers is opened and a silver coin is found. What is the probability that there is a silver coin in the other drawer?

Exercise 4.11 Suppose that an insurance company classifies people into one of three classes – good risks, average risks, and bad risks. Their records indicate that the probabilities that good, average and bad risk persons will be involved in an accident over a 1-year span are 0.05, 0.15 and 0.30, respectively. If 20% of the population are “good risks”, 50% are “average risks”, and 30% are “bad risks”, what proportion of people have accidents in a fixed year? If
policy holder A had no accidents in 1987, what is the probability that he or she is a good (average) risk?

Exercise 4.12 From a random sample, we calculate the mean $\mu = 36$ and standard deviation $\sigma = 3.8$. Estimate the parameters n and p of the underlying binomial distribution $B_{n,p}(x)$.

Exercise 4.13 You have calculated the mean of n independent measurements of a quantity with random measurement errors. How many measurements you need to make in order to reduce the error of the mean by a factor of 10?

Exercise 4.14 Prove for any constant a: $\text{Var}(a \cdot X) = a^2 \text{Var}(X)$

Exercise 4.15 Find $E[X]$ where X is the outcome when we roll a fair dice.

Exercise 4.16 Consider the sum of a sequence of 20 random bits with $P(X = 1) = 0.4$.

a) What is the resulting distribution? Determine σ and μ!
b) What is the probability for the sum being 10?
c) Use the central limit theorem to find an approximation for this probability.

Exercise 4.17 Plot various two-dimensional normal distributions $\mathcal{N}(\mu, \Sigma)$ and validate empirically the following propositions. You may use for example

$$
\mathcal{N}\left(\begin{bmatrix}1 \\ 10 \\ 0 \end{bmatrix}, \begin{bmatrix}10 & 0 \\ 0 & 1 \end{bmatrix}\right) \quad \text{and} \quad \mathcal{N}\left(\begin{bmatrix}-1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix}1 & 0 \\ 0 & 10 \end{bmatrix}\right).
$$

a) The sum of two normal distributions is not a normal distribution.
b) The product of two normal distributions is a normal distribution.
c) The maximum of two normal distributions is not a normal distribution.

Random Numbers

Exercise 4.18 Define the term "random number generator" in analogy to the term "random bit generator". Instead of bits we now allow numbers from a finite set N.

Exercise 4.19 Can the the Kolmogorov complexity of a sequence S be measured in practice? Discuss this questions with:

a) Write pseudocode of an program that finds the shortest C-program that outputs the given sequence S. Based on the grammar of the language C this program generates all C-programs of length 1, 2, 3, Each generated C-program now is executed and the produced sequence compared with S.
b) Which problems appear with this program?
c) Modify the program such that it approximates the Kolmogorov complexity of a given sequence S.

Exercise 4.20

a) Why is the period of a Linear Congruential Generator bounded above by the value of the modulus m? How could the generator be modified (for fixed m), to increase the period significantly?
b) Experiment with generators of the form $x_n = (x_{n-1} + x_{n-2}) \mod m$ and find cases for x_0 and m, where the period is longer than m.
c) Consider generators of the form \(x_n = (x_{n-1} + x_{n-2} + x_{n-3}) \mod m \) and find cases for \(x_0 \) and \(m \), where the period is longer than \(m^2 \).

d) Analyse the generators of the form \(x_n = (x_{n-1} + x_{n-2} + \ldots + x_0) \mod m \) with \(x_0 = 1 \) on periodicity.

e) Prove by induction: If \(x_1 = x_0 = 1 \) and \(x_n = 2 \cdot x_{n-1} \) for \(n \geq 2 \), then it also holds \(x_n = 2^{n-1} \) for \(n \geq 1 \).

Exercise 4.21

a) Calculate the expected value and standard deviation of a true binary random variable.

b) Draw the density function of a sum of 10, 100, 1000, 10000 good random bits. Use the built-in Mathematica function \texttt{Random} or the Octave function \texttt{rand}. Then determine for each of the sums the sample standard deviation.

Exercise 4.22

* a) Implement the mentioned linear congruential generator of the form \(x_n = (ax_{n-1} + b) \mod m \) with \(a = 7141 \), \(b = 54773 \) and \(m = 259200 \) in a programming language of your choice.

b) Test this generator on symmetry and periodicity.

c) Repeat the test after applying the Neumann Filter.

Exercise 4.23

a) Show that the bit sequence 110110110101010101010 passes the symmetry test.

b) Would you accept this sequence as a random bit sequence? Why?

c) Why is the symmetry test not sufficient to test the quality of a random number generator?

d) Suggest different randomness tests and apply them to the sequence.

Exercise 4.24

What can you say theoretically about the period of the BBS generator?

Exercise 4.25

Show that the length of a finite bit sequence \((a_n)_{n \in \{0,1\}}\) with independent bits gets shortened by applying the Neumann-filter by approximately the factor \(p(1-p) \), if the relative proportion of ones is equal to \(p \). (Theorem 4.8)

Statistics and Probability

Exercise 4.26

Calculate the probability distribution of the mean of \(n \) independent identically distributed discrete random variables \(X_1, \ldots, X_n \), with

\[p(X_i = 0) = p(X_i = 1) = p(X_i = 2) = p(X_i = 3) = p(X_i = 4) = 1/5 \]

for \(n = 1, 2, 3, 4 \).

Exercise 4.27

Prove the following identities for derivatives w.r.t. vectors:

a) \(\frac{\partial (a^T x)}{\partial x} = a \).

b) \(\frac{\partial (x^T A x)}{\partial x} = (A + A^T)x \).

Exercise 4.28

Given are the following 3 data points in \(x, y \): \((-2, 1), (-3, 0), (5, 2)\).

a) Determine the covariance matrix \(S \) of the data.
b) Determine the largest eigenvalue λ_1 of S and find the corresponding eigenvector.

c) How is the eigenvector found in b) called and what does it represent?

d) How can the second eigenvector of S be determined without calculating the eigenvalue λ_2?

e) What do the diagonal elements of S represent?

Exercise 4.29 To complete the proof of theorem Theorem 4.10, find a maximum of the variance $u_{M+1}^T S u_{M+1}$ with respect to u_{M+1} under the constraints $u_{M+1}^T u_{M+1} = 1$ and $u_{M+1}^T u_1 = u_{M+1}^T u_2 = \ldots = u_{M+1}^T u_M = 0$.

Exercise 4.30 Apply PCA to the Lexmed data. The data file `appraw1-15.m` with the variables number 1 to 15 (variable number 16 removed) can be downloaded from the course website.

a) Determine the the eigenvalues and eigenvectors for the raw data.

b) Normalize the data to the interval $[0,1]$ and repeat PCA.

c) Explain the differences.

d) Select the largest eigenvalues and give the transformation matrix for transforming the data into a lower dimensional space.

Exercise 4.31 Show that $\text{Cov} (x, y) = \mathbb{E} (xy) - \mathbb{E} (x) \mathbb{E} (y)$.

Exercise 4.32 Give an example for an estimator with 0 variance.

Exercise 4.33 Show that

a) $E[\bar{x}] = \mu$.

b) $\text{Var} (\bar{x}) = \frac{1}{n} \sigma^2$ if all measurements x_i in $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ are uncorrelated and identically distributed.

c) for the sample variance it holds:

$$s^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \mu)^2 - \frac{n}{n-1} (\bar{x} - \mu)^2.$$
5 Numerical Mathematics

Whenever symbolic computations do not lead to a result, we have to use numerical methods which typically do not give us exact results, but only an approximation. Since these methods involve many, typically iterative arithmetic operations, we have to use a computer for numerics. Efficient arithmetics on the computer is only available with floating point numbers with a (limited) fixed number of digits.

5.1 Arithmetics on the Computer

5.1.1 Floating Point Numbers

The set of floating point numbers to base \(\beta \), with \(t \) fractional digits and exponents between \(m \) and \(M \), can be formally defined by

\[
F(\beta, t, m, M) = \{ d : d = \pm.d_1d_2\ldots d_t \cdot \beta^e \} \cup \{0\} \subset \mathbb{Q}
\]

with

\[
\beta \in \mathbb{N}, \quad 0 \leq d_i \leq \beta - 1 \quad d_1 : \text{digits}, \quad d_1 \neq 0 \quad d_1, d_2, \ldots, d_t : \text{mantissa} \\
t : \text{mantissa length} \\
e : \text{exponent with} \quad m \leq e \leq M \quad m, M \in \mathbb{Z}
\]

The floating point number \(\pm.d_1d_2\ldots d_t \cdot \beta^e \) has the value

\[
d = \pm (d_1\beta^{e-1} + d_2\beta^{e-2} + \cdots + d_t\beta^{e-t})
\]

Example 5.1 Let \(\beta = 2 \) and \(t = 3 \) given, that means we consider three-digit numbers in the binary system. The number \(0.101 \cdot 2^{21} \) has the value

\[
0.101 \cdot 2^{21} = 1 \cdot 2^{20} + 0 \cdot 2^{19} + 1 \cdot 2^{18} = 2^{20} + 2^{18}.
\]

In the decimal system with \(\beta = 10 \) we need a six-digit mantissa \((t = 6) \), to represent this number:

\[
2^{20} + 2^{18} = 1310720 = 0.131072 \cdot 10^7.
\]

Distribution of \(F(\beta, t, m, M) \)

\[
|F(\beta, t, m, M)| = \frac{2}{\pm} \frac{(M - m + 1)(\beta^t - \beta^{(t-1)})}{\text{exponents}} + \frac{1}{\text{mantissas}} + \frac{1}{0}
\]
Example 5.2 \(F(2, 3, -1, 2)\)

with the upper formula we get:

\[|F(2, 3, -1, 2)| = 2(4)(2^3 - 2^2) + 1 = 33 \]

\(\Rightarrow\) there are only the “0” and 32 different numbers between \(\pm 0.100 \cdot 2^{-1}\), the number with smallest absolute value \\
\(\pm 0.111 \cdot 2^2\), the number with largest absolute value

The elements \(\geq 0\) of \(F(2, 3, -1, 2)\) are

\(0; \frac{1}{4}, \frac{1}{16}, \frac{3}{8}, \frac{7}{16}; \frac{1}{2}, \frac{5}{8}, \frac{7}{8}; \frac{1}{4}, \frac{3}{2}, \frac{7}{2}\)

Distribution on the number line:

```
gap at zero
```

problems:

- Exponent overflow
- Exponent underflow
- Round-off error

5.1.2 Round-off Errors

Definition 5.1 \(\text{fl}_c, \text{fl}_r : [-0.\alpha \ldots \alpha \cdot \beta^M, 0.\alpha \ldots \alpha \cdot \beta^M] \rightarrow F(\beta, t, m, M)\) with \(\alpha = \beta - 1\)

Round-off: \(x \mapsto \text{fl}_r(x) = \) nearest neighbor of \(x\) in \(F(\beta, t, m, M)\)

Truncate: \(x \mapsto \text{fl}_c(x) = \max \{y \in F(\beta, t, m, M) | y \leq x\}\)

It holds:

\[\text{absolute value Round-off Errors} = |\text{fl}_r(x) - x| \leq \frac{1}{2} \beta^{e-t} \]

\[\text{absolute value Truncation Error} = |\text{fl}_c(x) - x| < \beta^{e-t} \]

Example 5.3 \(\beta = 10\), \(t = 2\), \(\varepsilon = 3\)

\(x = 475\)

\(\text{fl}_r(x) = 0.48 \cdot 10^3\) \(\leftarrow\) round-off

\(\text{fl}_c(x) = 0.47 \cdot 10^3\) \(\leftarrow\) truncate

\[|\text{fl}_r(x) - x| = |480 - 475| = 5 \leq \frac{1}{2} \cdot 10^{3-2} = 5 \]

\[|\text{fl}_c(x) - x| = |470 - 475| = 5 < 10^{3-2} = 10 \]
5.1 Arithmetics on the Computer

Round-off and Truncation Errors (relative)

\[
\frac{|\text{fl}_r(x) - x|}{|x|} \leq \frac{1}{2} \beta^{1-t} \\
\frac{|\text{fl}_r(x) - x|}{|x|} < \beta^{1-t}
\]

Example 5.4 relative round-off error

\[
\frac{|480 - 475|}{|475|} = \frac{1}{95} \leq \frac{1}{2} \cdot 10^{-1} = \frac{1}{20}
\]

\[
\frac{|110 - 105|}{|105|} = \frac{1}{21} < \frac{1}{20}
\]

→ upper bound for the smallest number!

For fixed number of digits, the relative error gets bigger for smaller numbers!

Example 5.5 $t=3$, $\beta = 10$

- $110 \cdot 105 = 11550 \neq 11600 = \text{fl}_r(11550)$
- **Caution:** Field axioms violated!
- $F(\beta, t, m, M)$ is not closed w.r.t. multiplication.

Let $\star \in \{+,-,\cdot,\text{div}\}$

\[
\exists x,y \in F(\beta, t, m, M) : \text{fl}_r(x \star y) \neq x \star y
\]

5.1.3 Cancellation

Example 5.6 Let $\beta = 10$ and $t = 8$

\[
a = 0.1 \cdot 10^9 \\
b = 0.1 \cdot 10^1 \\
c = -0.1 \cdot 10^9 \\
a + b + c = 0.1 \cdot 10^1 = 1 \\
\text{fl}_r (\text{fl}_r (a + b) + c) = 0.1 \cdot 10^9 - 0.1 \cdot 10^9 = 0 \\
\text{fl}_r (a + \text{fl}_r (b + c)) = 0.1 \cdot 10^9 - 0.1 \cdot 10^9 = 0 \\
\text{fl}_r (\text{fl}_r (a + c) + b) = 0 + 0.1 \cdot 10^1 = 1
\]

⇒ Associative law is not valid in $F(\beta, t, m, M)$

5.1.4 Condition Analysis

Example 5.7 Solve the linear system

\[
x + ay = 1 \\
a x + y = 0
\]
\[x - a^2 x = 1 \]
\[x = \frac{1}{1 - a^2} \quad \text{for } a \neq \pm 1 \]

\(a = 1.002 = \) exact value
\(\hat{a} = 1.001 = \) measurement or rounding-off error

relative error:
\[\left| \frac{\hat{a} - a}{a} \right| = \frac{1}{1002} \]

solution:
\[x \approx -\frac{1}{0.004} \approx -249.75 \]
\[\hat{x} \approx -\frac{1}{0.002} \approx -499.75 \]

\[\Rightarrow \text{relative error} \quad \left| \frac{\hat{x} - x}{x} \right| \approx \left| \frac{-250}{249.75} \right| = 1.001 \quad (100\% \text{ error}) \]

See Figure 5.1.

Matrix \(A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \) is singular for \(a = 1 \), i.e.
\[\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0 \]

Definition 5.2 Let \(P \) be the problem to calculate the function \(f(x) \) with given input \(x \). The condition number \(C_p \) is the factor by which a relative error \(\frac{\Delta x}{x} \) in the input \(f \) will be increased, i.e.
\[\left| \frac{f(x + \Delta x) - f(x)}{f(x)} \right| = C_p \left| \frac{\Delta x}{x} \right| \]

This implies:
\[C_p = \left| \frac{f(x + \Delta x) - f(x)}{\Delta x} \frac{x}{f(x)} \right| \approx \left| \frac{f'(x)}{f(x)} x \right| \]
Example 5.8 Calculation of C_p

$$x = f(a) = \frac{1}{1-a^2}, \quad f'(a) = \frac{2a}{(1-a^2)^2}$$

$$C_p \approx \left| \frac{2a}{(1-a^2)^2(1-a^2)a} \right| = \left| \frac{2a^2}{1-a^2} \right| = 501.5$$

direct calculation (see above): $C_p \approx 1002$ Factor 2 due to linearization of f in a!

Definition 5.3 A problem is ill-conditioned (well-conditioned) if $C_p \gg 1$ ($C_p < 1$ oder $C_p \approx 1$)

Note: C_p depends on the input data!

5.2 Numerics of Linear Systems of Equations

see [Str03]

5.2.1 Solving linear equations (Gauß’ method)

Linear System $Ax = b$:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$
$$\cdots \cdots \cdots \cdots$$
$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

$$a_{ij} \in \mathbb{R} \quad n \geq 1$$

Questions:
- Is L solvable?
- Is there a unique solution?
- How to calculate the solutions?
- Is there an efficient algorithm?

Gaussian Elimination Method

Snapshot during the Elimination

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$
$$a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$
$$a_{kk}x_k + \cdots + a_{kj}x_j + \cdots + a_{kn}x_n = b_k$$
$$\vdots$$
$$a_{ik}x_k + \cdots + a_{ij}x_j + \cdots + a_{in}x_n = b_i$$
$$\vdots$$
$$a_{nk}x_k + \cdots + a_{nj}x_j + \cdots + a_{nn}x_n = b_n$$
Gaussian Elimination Method

The algorithm

for k=1,...,n-1
 search a_mk with |a_mk|=max{ |a_lk| : l >= k }
 if a_mk=0 print "singular"; stop
 swap rows m and k
 for i=k+1,...,n
 q_ik:=a_ik/a_kk
 for j=k+1,...,n
 a_ij:=a_ij - q_ik*a_kj
 end
 b_i:=b_i - q_ik*b_k
end
end

Theorem 5.1 Correctness: The Gaussian Method results in a unique solution \((x_1,\ldots,x_n)\) if and only if the linear system \(L\) has a unique solution \((x_1,\ldots,x_n)\).

Proof: as exercise

Theorem 5.2 Complexity: The number of operations of the Gaussian elimination for large \(n\) is approximately equal to \(\frac{1}{3}n^3\).

Proof:

1st step: \((n-1)(n-1+1)\) operations

k-th step: \((n-k)(n-k+1)\) operations

total:

\[
T(n) = \sum_{k=1}^{n-1} (n-k)(n-k+1) = \sum_{i=1}^{n-1} (l^2 + l) = \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6} + \frac{n(n-1)}{2}
\]

\[
= \frac{n^3}{3} - \frac{2n}{6} + \frac{n}{6} - \frac{n}{6} = \frac{n^3}{3}
\]

\(\Rightarrow\) for large \(n\): \(\frac{n^3}{3}\)
Example 5.9 Computer with 1 GFLOPS

<table>
<thead>
<tr>
<th>n</th>
<th>$T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$1/3 \cdot 10^4 \cdot 10^{-9}$ sec ≈ 0.3 μsec</td>
</tr>
<tr>
<td>100</td>
<td>$1/3 \cdot 100^3 \cdot 10^{-9}$ sec ≈ 0.3 msec</td>
</tr>
<tr>
<td>1000</td>
<td>$1/3 \cdot 10000^3 \cdot 10^{-9}$ sec ≈ 300 sec = 5 min</td>
</tr>
</tbody>
</table>

Problems/Improvements

1. long computing times for large n
 - better algorithms

 $$T(n) = C \cdot n^{2.38}$$ instead of \(\frac{1}{3} n^3 \)
 - Iterative method (Gauss-Seidel)

2. Round-off error
 - complete pivoting
 - Gauss-Seidel

Applications

- Construction of curves through given points
- Estimation of parameters (least squares)
- Linear Programming
- Computer graphics, image processing (e.g. computer tomography)
- Numerical solution of differential equations

Backward Substitution

After n-1 elimination steps:

$$A'x = b'$$ with

$$A' = \begin{pmatrix}
 a'_{11} & a'_{12} & \cdots & a'_{1n} \\
 0 & a'_{22} & \cdots & a'_{2n} \\
 0 & 0 & \ddots & \vdots \\
 0 & 0 & 0 & a'_{nn}
\end{pmatrix}$$

Calculation of x_1, \ldots, x_n:

$$x_n = \frac{b'_n}{a'_{nn}}$$

$$x_{n-1} = \frac{b'_{n-1} - a'_{n-1,n}x_n}{a'_{n-1,n-1}}$$

General:

$$x_i = \frac{b'_i - \sum_{k=i+1}^{n} a'_{ik}x_k}{a'_{ii}}$$

$$i = n, n-1, \ldots, 1$$
Runtime
- Divisions: n
- Number of additions and multiplications:

$$\sum_{i=1}^{n}(i-1) = \sum_{i=1}^{n-1} i = \frac{1}{2}n(n-1) \approx \frac{1}{2}n^2$$

⇒ Substitution is much faster than elimination!

Backward Elimination
A slight variant of the backward substitution is the backward elimination, where the upper right triangle of the matrix is being eliminated similarly to the Gaussian elimination. This variant is called Gauss-Jordan method. One application of this method is the computation of inverse matrices.

5.2.2 Iterative improvement of the solution (Gauss-Seidel)
Let \bar{x} the calculated solution of $Ax = b$ with the Gaussian method. In general $A\bar{x} = b - r$ with $r \neq 0$ (r: residual vector). With $x = \bar{x} + \Delta x$ we get

$$A\bar{x} = A(x - \Delta x) = b - r$$

$$A \cdot \Delta x = r$$

With this equation the correction $\Delta \bar{x}$ can be calculated. ⇒ better approximation for x:

$$x^{(2)} = \bar{x} + \Delta \bar{x}$$

The Gauss-Seidel Algorithm

$$x^{(1)} := \bar{x}$$
for $n = 1, 2, 3, \ldots$:

$$r^{(n)} = b - Ax^{(n)}$$
calculate $\Delta x^{(n)}$ nach $A\Delta x^{(n)} = r^{(n)}$

$$x^{(n+1)} = x^{(n)} + \Delta x^{(n)}$$

Remarks
1. usually (A not very ill-conditioned) very few iterations (≈ 3) necessary.
2. Solving $A\Delta x^{(n)} = r^{(n)}$ is time-consuming: $O(\frac{1}{3}n^3)$. With LU decomposition (see 5.2.3) of A, $A\Delta x^{(n)} = r^{(n)}$ can be solved in $O(n^2)$ steps.
3. If a system of equations has to be solved for more than one right hand side, all solutions will be calculated simultaneously (elimination necessary only once!)
5.2.3 LU-Decomposition

The Gaussian elimination (see algorithm) multiplies row \(i \) with the factor \(q_{ik} := a_{ik}/a_{kk} \) for the elimination of each element \(a_{ik} \) in the \(k \)-th column below the diagonal. If we write all calculated \(q_{ik} \) in a lower triangular matrix, in which we add ones in the diagonal, we get

\[
L := \begin{pmatrix}
1 & 0 & \ldots & \ldots & 0 \\
q_{21} & 1 & 0 & \ldots & \\
q_{31} & q_{32} & 1 & \ldots & \\
\vdots & \vdots & \ddots & \ddots & 0 \\
q_{n1} & q_{n2} & \ldots & q_{nn-1} & 1
\end{pmatrix}
\]

Furthermore, let

\[
U := A^\prime = \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
0 & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & a_{nn}
\end{pmatrix}
\]

the upper triangular matrix after the elimination.

Theorem 5.3 With \(L \) and \(U \) as defined above, we have \(L \cdot U = A \) and the solution \(x \) of the system \(Ax = b \) for any right hand side \(b \) can be calculated by solving the equation \(L \cdot c = b \) for \(c \) and solving \(U \cdot x = c \) for \(x \).

The system \(L \cdot c = b \) is solved by forward substitution and \(U \cdot x = c \) by backward substitution.

Proof: We show that \(L \cdot U = A \).

We write \(L \cdot U = A \) in detail:

\[
L \cdot U = \begin{pmatrix}
1 & 0 & \ldots & \ldots & 0 \\
q_{21} & 1 & 0 & \ldots & \\
q_{31} & q_{32} & 1 & \ldots & \\
\vdots & \vdots & \ddots & \ddots & 0 \\
q_{n1} & q_{n2} & \ldots & q_{nn-1} & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
0 & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & a_{nn}
\end{pmatrix} = A
\]

We now apply Gaussian elimination on both sides and get

\[
\begin{pmatrix}
1 & 0 & \ldots & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{pmatrix} \cdot U = U
\]

Thus \(LU = A \). Because of the associativity of matrix multiplication only \(L \) has to be eliminated on the left side.

5.2.4 Condition Analysis for Matrices

\(Ax = b \) with \(A : \text{Matrix} \ (n \times n) \) and \(x, b \in \mathbb{R}^n \)
What is the Norm of a matrix?

Vector Norm:

Definition 5.4 (p-Norm)

\[\forall x \in \mathbb{R}^n : \| x \|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{\frac{1}{p}} \]

\[1 \leq p < \infty \]

Theorem 5.4 \(\| x \|_p \) is a norm, i.e. it has the properties:

- \(\forall x \neq 0 : \| x \|_p > 0 \); \(\| x \|_p = 0 \Leftrightarrow x = 0 \)
- \(\forall \alpha \in \mathbb{R} : \| \alpha x \|_p = |\alpha| \cdot \| x \|_p \)
- \(\forall x, y \in \mathbb{R}^n : \| x + y \|_p \leq \| x \|_p + \| y \|_p \)

Lemma 5.1 (Hölder inequality) For real numbers \(p, q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \) and vectors \(x, y \in \mathbb{R}^n \) we have

\[\| xy \|_1 \leq \| x \|_p \| y \|_q. \]

Proof: Since \(\| xy \|_1 = \left| \sum_{i=1}^{n} x_i y_i \right| \leq \sum_{i=1}^{n} |x_i y_i| \) it remains to prove

\[\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}. \]

For real numbers \(a, b > 0 \) we have (proof as exercise) \(ab \leq \frac{a^p}{p} + \frac{b^q}{q} \), which we apply now to get

\[\sum_{i=1}^{n} \frac{|x_i y_i|}{\| x \|_p \| y \|_q} = \sum_{i=1}^{n} \frac{|x_i| |y_i|}{\| x \|_p \| y \|_q} \leq \sum_{i=1}^{n} \left(\frac{1}{p} \frac{|x_i|^p}{\| x \|_p} + \frac{1}{q} \frac{|y_i|^q}{\| y \|_q} \right) \]

\[= \sum_{i=1}^{n} \frac{1}{p} \frac{|x_i|^p}{\| x \|_p} + \sum_{i=1}^{n} \frac{1}{q} \frac{|y_i|^q}{\| y \|_q} = \frac{1}{p} \| x \|_p^p + \frac{1}{q} \| y \|_q^q \sum_{i=1}^{n} |y_i|^q = \frac{1}{p} + \frac{1}{q} = 1 \]

\[\square \]

Proof of proposition 3 in Theorem 5.4: For the cases \(p = 1 \) and \(p = \infty \) see exercises. For \(1 < p < \infty \):

\[|x_i + y_i|^p = |x_i + y_i||x_i + y_i|^{p-1} \leq (|x_i| + |y_i|)|x_i + y_i|^{p-1} \]

\[= |x_i||x_i + y_i|^{p-1} + |y_i||x_i + y_i|^{p-1} \]

Summation yields

\[\sum_{i=1}^{n} |x_i + y_i|^p \leq \sum_{i=1}^{n} |x_i||x_i + y_i|^{p-1} + \sum_{i=1}^{n} |y_i||x_i + y_i|^{p-1}. \]
Application of the Hölder inequality to both terms on the right hand sides gives
\[\sum_{i=1}^{n} |x_i||x_i + y_i|^{p-1} \leq \left(\sum_{i=1}^{n} |x_i|^p \right) \left(\sum_{i=1}^{n} (|x_i + y_i|^{p-1})^q \right)^{\frac{1}{q}} \]
and
\[\sum_{i=1}^{n} |y_i||x_i + y_i|^{p-1} \leq \left(\sum_{i=1}^{n} |y_i|^p \right) \left(\sum_{i=1}^{n} (|x_i + y_i|^{p-1})^q \right)^{\frac{1}{q}} \]
what we substitute in Equation 5.1 to obtain
\[\sum_{i=1}^{n} |x_i + y_i|^p \leq \left(\left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{\frac{1}{p}} \right) \left(\sum_{i=1}^{n} |x_i + y_i|^p \right)^{\frac{1}{q}} . \]
In the rightmost factor we used \((p - 1)q = p\). Now we divide by the rightmost factor, using \(\frac{1}{p} = 1 - \frac{1}{q}\) and get the assertion
\[\left(\sum_{i=1}^{n} |x_i + y_i|^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{\frac{1}{p}} . \]

\[\square\]

Lemma 5.2
\[
\|x\|_\infty := \max_{1 \leq i \leq n} |x_i| = \lim_{p \to \infty} \|x\|_p
\]
\[\|\|_\infty\]\ is called maximum norm

In the following let \(\|x\| = \|x\|_\infty\)

Matrix Norm

Definition 5.5 For any vector norm the canonical matrix norm is defined as:
\[
\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}
\]

Lemma 5.3 The matrix norm is a norm and for a \(n \times m\) matrix \(A\) it holds
\[
\|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{m} |a_{ij}|
\]
\[\|Ax\| \leq \|A\| \cdot \|x\|\]
\[\|AB\| \leq \|A\| \cdot \|B\|\]
Condition of a matrix:

Consequence of errors in the matrix elements of A or the right hand side b on errors in the solution x.

1. Error in b:

\[
\tilde{b} = b + \Delta b \\
\Rightarrow \tilde{x} = x + \Delta x \\
\Rightarrow A(x + \Delta x) = b + \Delta b \\
\Rightarrow \Delta x = A^{-1}\Delta b \\
\Rightarrow \|\Delta x\| = \|A^{-1}\Delta b\| \leq \|A^{-1}\| \cdot \|\Delta b\|
\]

\[
b = Ax \\
\Rightarrow \|b\| \leq \|A\| \cdot \|x\| \\
\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\Delta b\|}{\|b\|}
\]

\[
\left\| \frac{\Delta x}{x} \right\| \leq C_A
\]

with $C_A = \|A\| \cdot \|A^{-1}\|

2. Error in A:

\[
(A + \Delta A)(x + \Delta x) = b \\
x + \Delta x = (A + \Delta A)^{-1}b = (A + \Delta A)^{-1}Ax \\
\Delta x = ((A + \Delta A)^{-1}A - I)x \\
= (A + \Delta A)^{-1}(A - (A + \Delta A))x \\
= (A + \Delta A)^{-1}\Delta Ax
\]

\[
\Rightarrow \|\Delta x\| \leq \|(A + \Delta A)^{-1}\| \cdot \|\Delta A\| \cdot \|x\|
\]

\[
\left\| \frac{\Delta x}{x} \right\| \leq \|(A + \Delta A)^{-1}\| \cdot \|A\| \cdot \frac{\|\Delta A\|}{\|A\|} \approx C_A \frac{\|\Delta A\|}{\|A\|} \approx \|A^{-1}\| \cdot \|\Delta A\|
\]

C_A analogous to C_p:

\[
C_p = \left| \frac{f'(x)}{f(x)} \right| x
\]

Example 5.10

\[
\begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]
5.3 Roots of Nonlinear Equations

\[A^{-1} = \frac{1}{1-a^2} \begin{pmatrix} 1 & -a \\ -a & 1 \end{pmatrix} \]

\[\|A\| = 1 + a, \quad \|A^{-1}\| = \left| \frac{1+a}{1-a^2} \right| = \left| \frac{1+a}{1-a} \right| \quad \text{for} \quad a > 0 \]

\[\Rightarrow C_A = \|A\| \cdot \|A^{-1}\| = \left| \frac{(1+a)^2}{1-a^2} \right| = \left| \frac{1+a}{1-a} \right| \]

\[a = 1.002: \]

\[\Rightarrow A = \begin{pmatrix} 1 & 1.002 \\ 1.002 & 1 \end{pmatrix} \]

\[\Delta A = \tilde{A} - A = \begin{pmatrix} 0 & -0.001 \\ -0.001 & 0 \end{pmatrix} \]

\[\Rightarrow C_A = 1001 \]

\[\|\Delta A\| = 0.001, \quad \|A\| = 2.002 \]

\[\frac{\|\Delta x\|}{\|x\|} \approx 1001 \times \frac{0.001}{2.002} = 0.5 \]

5.3 Roots of Nonlinear Equations

given: nonlinear equation \(f(x) = 0 \)
sought: solution(s) (root(s))

5.3.1 Approximate Values, Starting Methods

Example 5.11

\[f(x) = \left(\frac{x}{2} \right)^2 - \sin x \]

Table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{x}{2})^2</th>
<th>(\sin x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>0.64</td>
<td>0.9996</td>
<td>< 0</td>
</tr>
<tr>
<td>1.8</td>
<td>0.81</td>
<td>0.974</td>
<td>< 0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.00</td>
<td>0.909</td>
<td>> 0</td>
</tr>
</tbody>
</table>

\[\Rightarrow \text{Root in } [1.8; 2.0] \]

in general: if \(f \) is continuous and \(f(a) \cdot f(b) < 0 \) then \(f \) has a root in \([a, b]\).
Interval bisection method

Requirements:
- \(f : [a, b] \to \mathbb{R} \) continuous and \(f(a) \cdot f(b) < 0 \).
- W.l.o.g.: \(f(a) < 0, f(b) > 0 \)

![Figure 5.3: Root in the interval \([a, b]\) can be determined quickly by the interval bisection method.]

Algorithm:

for \(k = 1, 2, \ldots \) [1ex]

\[
m_k = \frac{1}{2}(a_{k-1} + b_{k-1})
\]

\[
(a_k, b_k) = \begin{cases} (m_k, b_{k-1}) & \text{if } f(m_k) < 0 \\ (a_{k-1}, m_k) & \text{if } f(m_k) > 0 \end{cases}
\]

(Root found exactly if \(f(m_k) = 0 \))

Theorem 5.5 Let \(f : [a, b] \to \mathbb{R} \) continuous with \(f(a) \cdot f(b) < 0 \). Then the interval bisection method converges to a root \(\bar{x} \) of \(f \). After \(n \) steps \(\bar{x} \) is determined with a precision of \(\frac{b-a}{2^n} \).

For the proof of theorem 5.5 the following definition and theorem are required:

Definition 5.6 A sequence \((a_n) \) is a Cauchy sequence, if:

\[
\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \geq N : |a_m - a_n| < \varepsilon
\]

Theorem 5.6 In \(\mathbb{R} \) every Cauchy sequence converges.

Proof of Theorem 5.5:

1. Speed of Convergence: n-th step:

\[
(b_n - a_n) = \frac{1}{2}(b_{n-1} - a_{n-1}) = \ldots = \frac{1}{2^n}(b_0 - a_0) = \frac{1}{2^n}(b - a).
\]
2. Convergence:

\[\bar{x} = m_{n+1} \pm \frac{1}{2} (b_n - a_n) = m_{n+1} \pm \frac{1}{2^{n+1}} (b - a) \]

For \(m \geq n + 1 \) it holds

\[|a_m - a_n| \leq b_n - a_n = \frac{1}{2^n} (b - a) < \varepsilon \quad \text{for large enough } n. \]

\(\Rightarrow (a_n), (b_n) \) are Cauchy sequences \(\Rightarrow \) (\(a_n \), \(b_n \)) converges with

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \bar{x} \]

because of \(f(a_n) < 0 < f(b_n) \) and continuity of \(f \).

\[\Rightarrow \begin{cases}
\lim_{n \to \infty} f(a_n) = f(\bar{x}) \leq 0 \\
\lim_{n \to \infty} f(b_n) = f(\bar{x}) \geq 0
\end{cases} \Rightarrow f(\bar{x}) = 0 \]

Remarks:

1. for each step, the precision is doubled, respectively the distance to the solution halved. Thus for each step, the precision is improved by a binary digit.

Because of \(10^{-1} \approx 2^{-3.3} \) about 3.3 steps are necessary to improve the precision by a decimal digit.

\(\Rightarrow \) slow convergence! (Example: for 12-digits precision, about 40 steps required)

2. slow convergence, **because only the sign of \(f \) is used**, \(f(a_n), f(b_n) \) is never used!

\(\Rightarrow \) better methods use \(f(x), f'(x), f''(x), \ldots \)

3. interval bisection methods also applicable on discontinuous functions

\(\Rightarrow \) Exercise

4. discrete variants of interval bisection:

Bisection Search (=efficient search method in ordered files)

\[T(n) \approx \log_2(n) \text{ instead of } T(n) \approx n \]

with \(n \)=number of entries in the file.

5. Why \(\log_2(n) \) steps?

Let \(n = b - a \) the number of entries in the file.

\[\Rightarrow b_k - a_k \approx \frac{1}{2^k} (b - a) = \frac{n}{2^k} \]

Number of steps to \(b_k - a_k \leq 1 \)

\[\Rightarrow \frac{n}{2^k} \leq 1 \Rightarrow 2^k \geq n \Rightarrow k \geq \log_2 n \]

6. interval bisection methods are globally convergent!
5.3.2 Fixed Point Iteration

Goal: Solution of equations of the form

\[x = f(x) \]

(Fixed Point Equation)

Iterative Solution:

\[x_0 = a \]
\[x_{n+1} = f(x_n) \quad (n = 0, 1, 2, \ldots) \]

Example 5.12 In Figure 5.4 the solution of the fixed point equation \(x = f(x) \) for various functions \(f \) is shown graphically.

![Graphs showing divergence and convergence of fixed point iterations](image)

Figure 5.4: two examples of divergent and convergent iterations.

Definition 5.7 A function \(f : [a, b] \rightarrow [a, b] \in \mathbb{R} \) is called a contraction on \([a, b] \), if a (Lipschitz) constant \(L \) with \(0 < L < 1 \) exists with \(|f(x) - f(y)| \leq L|x - y| \ \forall x, y \in [a, b] \)

Lemma 5.4 If \(f : [a, b] \rightarrow [a, b] \) is differentiable, then \(f \) is a contraction on \([a, b] \) with Lipschitz constant \(L \) if and only if \(\forall x \in [a, b] : \ |f'(x)| \leq L < 1. \)
5.3 Roots of Nonlinear Equations

Proof: “⇒”: let $|f(x) - f(y)| \leq L|x - y|$ \quad $\forall x, y \in [a, b]$

$$\Rightarrow \forall x, y : \frac{|f(x) - f(y)|}{|x - y|} \leq L$$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} = |f'(y)| \leq L$$

“⇐”: omitted

Example 5.13

$$f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

For f to be contracting, we need $|f'(x)| \leq L < 1$. It is easy to see that for all positive values a and all x we have

$$f'(x) = \frac{1}{2} - \frac{a}{2x^2} < 1/2$$

We need to find an interval on which

$$f'(x) > -1$$

Since f' is strictly monotonically increasing, we look for the left margin of the interval by setting

$$\frac{1}{2} - \frac{a}{2x^2} > -1$$

which leads to

$$\frac{3}{2} > \frac{a}{2x^2}$$

and $x > \sqrt[3]{\frac{3}{a}}$

a=2:

$$x > \sqrt[3]{\frac{2}{3}} \approx 0.817$$

f is a contraction on $[\sqrt[3]{\frac{3}{2}} + \varepsilon, \infty]$ for $\varepsilon > 0$.
Theorem 5.7 Banach Fixed Point Theorem: Let $f : [a, b] \to [a, b] \subset \mathbb{R}$ be a contraction. Then the following holds

1. f has exactly one fixed point $s \in [a, b]$.
2. For any initial value $x_0 \in [a, b]$ fixed point iteration converges to s.
3. The cutoff error can be estimated by:

$$|s - x_k| \leq \frac{L^{k-l}}{1-L} |x_{l+1} - x_l| \quad \text{for} \quad 0 \leq l < k$$

For $l = 0$ we get

$$|s - x_k| \leq \frac{L^k}{1-L} |x_1 - x_0| \quad \text{(a priori estimation)}$$

and for $l = k - 1$:

$$|s - x_k| \leq \frac{L}{1-L} |x_k - x_{k-1}| \quad \text{(a posteriori estimation)}.$$

Proof:

$$|x_{k+1} - x_k| = |f(x_k) - f(x_{k-1})| \leq L|x_k - x_{k-1}|$$

$$= L|f(x_{k-1}) - f(x_{k-2})| \leq L^2|x_{k-1} - x_{k-2}|$$

$$= \ldots$$

$$= L^{k-l}|x_{l+1} - x_l| \quad \text{for} \quad 0 \leq l \leq k$$

for $l = 0$:

$$|x_{k+1} - x_k| \leq L^k |x_1 - x_0|$$

$$|x_{k+m} - x_k| = \left| \sum_{i=k}^{k+m-1} x_{i+1} - x_i \right|$$

$$\leq \sum_{i=k}^{k+m-1} |x_{i+1} - x_i| \leq L^k (L^{m-1} + L^{m-2} + \ldots + L + 1)|x_1 - x_0|$$

$$= L^k \frac{1-L^m}{1-L} |x_1 - x_0| \to 0 \quad \text{for} \quad k \to \infty$$

$\Rightarrow (x_k)$ Cauchy Sequence $\Rightarrow (x_k)$ converges

for $s = \lim_{n \to \infty} x_n$ we have $f(s) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = s$.

Thus s is fixed point of f.

s is unique, since for s_1, s_2 with $s_1 = f(s_1), s_2 = f(s_2)$ it holds:

$$|s_1 - s_2| = |f(s_1) - f(s_2)| \leq L |s_1 - s_2| \quad \text{because of} \quad L < 1 \Rightarrow s_1 = s_2$$

Error estimation see [Sch88] p. 188
Example 5.14

\[f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right) \quad a = 5, x_0 = 2 \]

<table>
<thead>
<tr>
<th>n</th>
<th>(x_n)</th>
<th>((x_n - x_{n-1}) \geq (\sqrt{5} - x_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>2.2361111</td>
<td>0.0139</td>
</tr>
<tr>
<td>3</td>
<td>2.2360679779</td>
<td>0.000043</td>
</tr>
<tr>
<td>4</td>
<td>2.2360679775</td>
<td>0.0000000042</td>
</tr>
</tbody>
</table>

Cutoff-Error
- \(f \) is contracting on \([1.581, \infty]\) with \(L = 0.5 \).
- We apply Theorem 5.7 (3) with \(l = k - 1 \):

\[
|s - x_k| \leq \frac{L}{1 - L} |x_k - x_{k-1}| \quad \text{(a posteriori estimation)}
\]

\[
\Rightarrow |\sqrt{5} - x_k| \leq \frac{0.5}{1 - 0.5} |x_k - x_{k-1}| = |x_k - x_{k-1}|
\]

- A posteriori estimate: 0.00000000042
- A priori estimate: 0.031
- Theorem 5.7 (3) gives estimation of the error without knowing the limit!

Example 5.15

\[f(x) = \exp(-x) = x \]

\[f : A \rightarrow A, \quad A = [0.5, 0.69] \]

\[L = \max_{x \in A} |f'(x)| = \max_{x \in A} | - e^{-x} | = e^{-0.5} \approx 0.606531 < 1 \]

Theorem 5.7 (3) with \(l = 0 \):

\[
|s - x_k| \leq \frac{L^k}{1 - L} |x_1 - x_0| \quad \text{(a priori estimation)}
\]
Calculation of \(k \), if \(|s - x_k| \leq \varepsilon = 10^{-6} \)

\[
k \geq \frac{\log \left(\frac{\varepsilon (1-L)}{|x_k-x_0|} \right)}{\log L} \approx 22.3
\]

Error after 12 steps:

- a priori: \(|s - x_{12}| \leq 1.70 \cdot 10^{-4} \)
- a posteriori: \(|s - x_{12}| \leq 8.13 \cdot 10^{-5} \) (better!)

Result: The iteration in the first example converges much faster than in the second example.

5.3.3 Convergence Speed and Convergence Rate

Definition 5.8 \(\varepsilon_k := x_k - s \) is called cutoff error

Fixed Point Theorem (\(f \) contracting):

\[
|\varepsilon_{k+1}| = |x_{k+1} - s| = |f(x_k) - f(s)| \leq L|x_k - s| = L|\varepsilon_k|
\]

\(\implies \) Error decreases in each step by factor \(L \)!

Theorem 5.8 If \(f : [a, b] \to [a, b] \) satisfies the conditions of Theorem 5.7 and is continuously differentiable with \(f'(x) \neq 0 \ \forall x \in [a, b] \), then it holds:

\[
\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k} = f'(s)
\]

Proof: as exercise

Conclusions

- \(\varepsilon_{k+1} \approx q \varepsilon_k \) with \(q := f'(s) \) (convergence rate)
- \((x_k) \) is called **linearly convergent** with **convergence rate** \(|q| \).
- How many steps to gain one decimal place?
 \(\implies \) after \(m \) more steps the error is \(\varepsilon_{k+m} \approx \frac{1}{10} \varepsilon_k \)

\[
\varepsilon_{k+m} \approx q^m \varepsilon_k = 10^{-1} \varepsilon_k
\]

\(\implies m \log_{10} |q| \leq -1 \implies m \geq \frac{-1}{\log_{10} |q|} \)

| \(|q| = |f'(s)| \) | 0.316 | 0.562 | 0.75 | 0.891 | 0.944 | 0.972 |
|---|---|---|---|---|---|---|
| \(m \) | 2 | 4 | 8 | 20 | 40 | 80 |
Theorem 5.9 Let \(f \) be contracting with \(f'(s) = 0 \), \(\forall x \in [a, b] \) \(f''(x) \neq 0 \) and \(f'' \) continuous on \([a, b] \). Then we have

\[
\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^2} = \frac{1}{2} f''(s)
\]

Conclusion:

for \(k \to \infty : \varepsilon_{k+1} \approx p \varepsilon_k^2 \) with \(p := \frac{1}{2} f''(s) \)

\(\Rightarrow \) quadratic convergence (convergence with order 2)

Correct number of digits is doubled in each step,

because

\[
\varepsilon_{k+1} = p \varepsilon_k^2 \Leftrightarrow \log \varepsilon_{k+1} = \log p + 2 \log \varepsilon_k
\]

\[
\Leftrightarrow \frac{\log \varepsilon_{k+1}}{\log \varepsilon_k} = \frac{\log p}{\log \varepsilon_k} + 2
\]

Example 5.16

\(\varepsilon_k = 10^{-4}, \varepsilon_{k+1} = 10^{-8}, \varepsilon_{k+2} = 10^{-16}, \varepsilon_{k+3} = 10^{-32}, \ldots \)

Proof of Theorem 5.9:

\[
\varepsilon_{k+1} = x_{k+1} - s = f(x_k) - f(s) = f(s + \varepsilon_k) - f(s)
\]

\[
= f(s) + \varepsilon_k f'(s) + \frac{1}{2} \varepsilon_k^2 f''(z) - f(s)
\]

\[
= \frac{1}{2} \varepsilon_k^2 f''(s + \theta_k \varepsilon_k) \quad \text{with} \quad 0 < \theta_k < 1
\]

because of \(f''(x) \neq 0 \ \forall x \in [a, b] \) and \(x_0 \neq s \) it holds:

\[
\forall k > 0 : x_k - s = \varepsilon_k \neq 0
\]

\[
\Rightarrow \frac{\varepsilon_{k+1}}{\varepsilon_k^2} = \frac{1}{2} f''(s + \theta_k \varepsilon_k) \quad k = 0, 1, 2, \ldots
\]

\[
\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^2} = \frac{1}{2} \lim_{k \to \infty} f''(s + \theta_k \varepsilon_k) = \frac{1}{2} f''(s + \lim_{k \to \infty} (\theta_k \varepsilon_k)) = \frac{1}{2} f''(s)
\]
5.3.4 Newtons method

sought: Solutions of \(f(x) = 0 \)

The Tangent: \(T(x) = f(x_k) + (x - x_k)f'(x_k) \)

\[T(x_{k+1}) = 0 \quad \Rightarrow \quad f(x_k) + (x_{k+1} - x_k)f'(x_k) = 0 \]
\[\Rightarrow (x_{k+1} - x_k)f'(x_k) = -f(x_k) \]
\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad \text{for} \quad k = 0, 1, 2, \ldots \quad (5.2) \]

with \(F(x) := x - \frac{f(x)}{f'(x)} \) we can write (5.2) as fixed point iteration

\[x_{k+1} = F(x_k) \]

Is there a fixed point \(s \) with \(F(s) = s? \) (\(\rightarrow \) Exercise)

Theorem 5.10 Let \(f : [a, b] \rightarrow \mathbb{R} \) three times continuously differentiable and \(\exists s \in [a, b] : f(s) = 0, \) and \(\forall x \in [a, b] : f'(x) \neq 0 \) and \(f''(s) \neq 0. \) Then there exists an interval \(I = [s - \delta, s + \delta] \) with \(\delta > 0 \) on which \(F : I \rightarrow I \) is a contraction. For each \(x_0, x_k \) is (according to 5.2) quadratically convergent.

Proof: We apply Banach’s fixed point theorem:
1. **F is a contraction** in the neighbourhood of \(s \), i.e. \(|F'(x)| < 1 \) for \(s - \delta \leq x \leq s + \delta \)

\[
F'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)^2} \\
\Rightarrow F'(s) = 0 \cdot \frac{f''(s)}{f'(s)^2} = 0.
\]

Because of the continuity of \(F' \), \(\exists \delta > 0 \) with

\[
F'(x) \leq L < 1 \quad \forall x \in [s - \delta, s + \delta] =: I
\]

\[\Rightarrow F \text{ is a contraction in } I\]

\[\Rightarrow \lim_{k \to \infty} x_k = s\]

2. **Order of Convergence:**

Application of Theorem 5.9 to \(F \) with \(F'(s) = 0 \) from (5.3) we get:

\[
F''(x) = \frac{f'(x)^2 f''(x) + f(x) f'(x) f'''(x) - 2 f(x) f''(x)^2}{f'(x)^3}
\]

\[\Rightarrow F''(s) = \frac{f'(s)^2 f''(s)}{f'(s)^3} = \frac{f''(s)}{f'(s)}\]

According to Theorem 5.9, \((x_k) \) is quadratically convergent on \(I \) if and only if \(f''(s) \neq 0 \).

(otherwise even higher order of convergence)

5.4 Exercises

Exercise 5.1 Systems like Mathematica or Maxima can do computations on integers and rational numbers with arbitrary precision. Unfortunately these systems are not practically usable for numerics on the computer. Why? Give an example for a computation that would not work.

Exercise 5.2 How could you factor \(A \) into a product \(UL \), upper triangular times lower triangular? Would they be the same factors as in \(A = LU \)?

Exercise 5.3 Prove the triangular inequality for real numbers, i.e. that for any two real numbers \(x \) and \(y \) we have \(|x + y| \leq |x| + |y| \).

Exercise 5.4

a) Calculate the \(p \)-norm \(||x||_p \) of the vector \(x = (1, 2, 3, 4, 5) \) for the values of \(p = 1, 2, \ldots, 50 \).

b) Draw the unit circles w.r.t. various \(p \)-norms in \(\mathbb{R}^2 \) and compare them. A unit circle w.r.t. norm is the set of points \(x \) with \(||x|| = 1 \).

c) Prove that the \(p \)-norm is a norm for \(p = 1, \infty \).

d) Show that for \(x \geq 0 \) and \(0 < p < 1 \) the inequality \(x^p - px \leq 1 - p \) holds (hint: curve sketching of \(x^p - px \)).

e) Show by setting \(x = a/b \) and \(q = 1 - p \) in the above inequality, that for \(a, b > 0 \) the inequality \(a^p b^q \leq pa + qb \) holds.
f) Show using the above result that for \(a, b > 0, \ p, q > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \) the inequality \(ab \leq \frac{a^p}{p} + \frac{b^q}{q} \) holds.

Exercise 5.5 Prove Lemma 5.2, i.e. that \(\|x\|_\infty = \lim_{p \to \infty} \|x\|_p \)

Exercise 5.6 Show that the addition of the \(k \)-fold of row \(i \) of a square matrix \(A \) to another row \(j \) can be expressed as the product \(G \cdot A \) with a square matrix \(G \). Determine the matrix \(G \).

Exercise 5.7 Prove theorem 5.1, i.e. that the Gaussian method for solving linear systems is correct.

Exercise 5.8 Apply elimination to produce the factors \(L \) and \(U \) for

\[
A = \begin{bmatrix} 2 & 1 \\ 8 & 7 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 4 & 8 \end{bmatrix}
\]

Exercise 5.9 Calculate for the matrix

\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}
\]

the matrices \(L \) and \(U \) of the LU decomposition. Then determine the solutions of \(Ax = b \) for the right sides \((1,1,1)^T\) and \((3,1,0)^T\).

Exercise 5.10 For the calculation of \(\sqrt{a} \), the iteration of \(x_{n+1} = a/x_n \) with \(a > 0, \ x_0 > 0 \) can be tried.

a) Visualize the iteration sequence.

b) Explain on the basis of drawing why the sequence does not converge.

c) Prove that this sequence does not converge.

d) How to change the iteration formula \(x_{n+1} = a/x_n \), so that the sequence converges?

Exercise 5.11

a) What means **convergence of a sequence** \((x_n)_{n \in \mathbb{N}} \)? (Definition!)

b) Give a convergent, divergent, alternating convergent and alternating divergent sequence.

c) Give at least one simple convergence criterion for sequences.

Exercise 5.12 Apply the interval bisection method to the function

\[
f(x) = \frac{x(1-x)}{1-x^2}
\]

with the initial interval \([-4, -1/2]\). Calculate the limit of the sequence with at least 4 digits. Give reasons for the surprising result.

Exercise 5.13 Sought are the solutions of the equation

\[
\tan x = \cos x \quad (5.4)
\]

in the interval \([0, \pi/2]\).
a) Show that the equation (5.4) in $[0, \pi/2]$ has exactly one solution.

b) In the following, the equation (5.4) is to be solved by fixed point iteration. Therefore use the form:

$$x = f(x) := \arctan(\cos x) \quad (5.5)$$

Give the smallest possible Lipschitz bound for f and a corresponding sub-interval of $[0, \pi/2]$.

c) Determine an a priori estimation for the number of iterations for a precision of at least 10^{-3}.

d) Calculate the iteration sequence (x_n) of the fixed-point iteration with the initial value $x_0 = \pi/4$ to $n = 10$.

e) Determine an interval in which the root is for sure using the a posteriori estimation after 8 steps.

f) Why is the transformation of the equation (5.4) to $x = \arccos(\tan x)$ less favorable than the one used above?

g) Write a simple as possible Matlab or Octave program (3-4 commands!), which calculates the iteration sequence and stores it in a table.

Exercise 5.14 Prove theorem 5.8, i.e. if $f : [a, b] \to [a, b]$ is a contraction and is continuously differentiable with $f'(x) \neq 0 \ \forall x \in [a, b]$, then it holds:

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k} = f'(s)$$

Exercise 5.15

a) Prove that any contracting function $f : [a, b] \to [a, b] \in \mathbb{R}$ is continuous.

b) Prove that not all contracting functions $f : [a, b] \to [a, b] \in \mathbb{R}$ are differentiable.

c) Prove that any differentiable function $f : D \to \mathbb{R}, (D \subset \mathbb{R} \text{ open})$ is continuous.

Exercise 5.16 Let $f : [a, b] \to [a, b]$ differentiable in on $[a, b]$. Prove that any root x of f in $[a, b]$ with $f'(x) \neq 0$ is a fixed point of $F(x) = x - \frac{f(x)}{f'(x)}$ and vice versa.

Exercise 5.17

a) Let us assume that at any fixed time the temperature on the surface of the earth is a continuous function of the position. Prove that there exists at least one pair of points on the equator that are directly opposite to each other and have the same temperature.

b) Assume now that you get a file with high resolution temperature values for the whole equator at a fixed time. Describe a fast algorithm for finding such a pair of opposite points with approximately equal temperature.
6 Function Approximation

6.1 Polynomial Interpolation

Example 6.1 Linear interpolation (see figure Figure 6.1)

When there were no calculators, using logarithms for practical purposes was done with tables of logarithms. Only integers were mapped, intermediate values were determined by linear interpolation.

\[
\begin{align*}
\lg(1230) & = 3.0899 \\
\lg(1231) & = 3.0903 \\
\lg(1230.3) & = ? \\
\lg(1230.3) & \approx 3.0899 + 4 \cdot 0.0001 \cdot 0.3 = 3.0902
\end{align*}
\]

Figure 6.1: Determination of \(\lg(1230.3) \) using linear interpolation.

Motivation

- Higher order interpolation (polynomial, nonlinear interpolation)
- Tools for numerical methods (functional approximation, numerical differentiation, integration,...)

Calculation of the Polynomial

Given: Value table \((x_k, y_k)\) with \(k = 1, \ldots, n\)

Sought: Polynomial \(p\) with \(p(x_i) = y_i\) for \((i = 1, \ldots, n)\)

Ansatz: \(p(x) = a_1 + a_2x + \cdots + a_nx^{n-1}\)

\[a_1 + a_2x_i + a_3x_i^2 + \cdots + a_nx_i^{n-1} = y_i\quad \text{for} \quad (i = 1, \ldots, n)\]
6.1 Polynomial Interpolation

\[A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \text{with} \quad A = \begin{pmatrix} \begin{array}{cccc} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{array} \end{pmatrix} \]

\[\text{Vandermonde matrix} \]

Theorem 6.1 If \(x_1, \ldots, x_n \) are distinct, then for any \(y_1, \ldots, y_n \) there is a unique polynomial \(p \) of degree \(\leq n - 1 \) with \(p(x_i) = y_i \) for \((i = 1, \ldots, n) \).

Proof: To show that equation \(Aa = y \) is uniquely solvable, we show that the nullspace of \(A \) is \(0 \), i.e. \(Aa = 0 \) \(\Rightarrow a = 0 \):

\[Aa = 0 \quad \Rightarrow \forall i = 1, \ldots, n : p(x_i) = 0 \]
\[\Rightarrow p(x) \equiv 0 \quad \text{(zero polynomial)} \]
\[\Rightarrow a = 0 \]

Example 6.2 Interpolation of \(\sin(x) \)

Table of values in \(\{-m, -m + 1, \ldots, 0, 1, 2, \ldots, m\} \)

\[
\begin{align*}
\sin(0.5) & = 0.479426 \\
p(0.5) & = 0.479422 \quad \text{(m=3, i.e. n=7 points)} \\
p(0.5) & = 0.469088 \quad \text{(m=2, i.e. n=5 points)}
\end{align*}
\]

\(\sin(x) \) is well approximated by the interpolating polynomial, even at relatively small number of given points (n=5,7), as can be seen in Figures 6.2, 6.3 and 6.4.

Figure 6.2: Interpolation of \(\sin(x) \) with \(n = 5 \) given points.

Example 6.3 Interpolation of \(f(x) \) in the interval \([-1,1] \):

\[f(x) = \frac{1}{1 + 25x^2} \]

Figure 6.5 clearly shows the poor approximation particularly in the margin areas. Idea: more given points in the margin areas.
Figure 6.3: Interpolation of $\sin(x)$ with $n = 7$ given points.

Figure 6.4: Interpolation of $\sin(x)$ with $n = 15$ given points.

Figure 6.5: Interpolation of $\frac{1}{1 + 25x^2}$ with 11 given points.
How to minimize the maximum error?

Definition 6.1 For any \(f : [a, b] \to \mathbb{R} \) we define \(\|f\|_\infty := \max_{x \in [a, b]} |f(x)| \)

Theorem 6.2 Let \(f : [a, b] \to \mathbb{R} \) be \(n \)-times continuously differentiable. Let \(a = x_1 < x_2 < \ldots < x_{n-1} < x_{n+1} = b \) and \(p \) the interpolating polynomial of degree \(n \) with \(p(x_i) = f(x_i) \) for \((i = 1, \ldots, n) \). Then

\[
f(x) - p(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x - x_1)(x - x_2) \cdots (x - x_{n+1})
\]

for a point \(z \in [a, b] \).

Note:
- remainder term is the same as in Taylor’s theorem for \(x_1 = x_2 = \cdots = x_{n+1} \)
- right hand side equals zero for \(x = x_i \) (i.e. in all given points)

Chebyshev Interpolation

Question: How should the given points \(x_1, \ldots, x_{n+1} \) be distributed, to minimize (for constant \(n \)) the maximum error?

The answer to this question is given by the following theorem:

Theorem 6.3 Let \(f : [-1, 1] \to \mathbb{R} \) and \(p \) the interpolating polynomial at the given points \(-1 \leq x_1 < \cdots < x_n \leq 1\). The approximation error \(\|f - p\|_\infty = \max_{x \in [-1, 1]} |f(x) - p(x)| \) is minimal for

\[
x_k = -\cos \left(\frac{2k - 1}{n} \cdot \frac{\pi}{2} \right) \quad (k = 1, \ldots, n)
\]

The values \(x_k \) are called **Chebyshev abscissae**.

Example 6.4 Let \(n=6 \). The Chebyshev abscissae are (see also Figure 6.6).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2k-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>-cos \left(\frac{\pi}{12} (2k - 1) \right)</td>
<td>-0.966</td>
<td>-0.707</td>
<td>-0.259</td>
<td>0.259</td>
<td>0.707</td>
<td>0.966</td>
</tr>
</tbody>
</table>

Example 6.5 Figure 6.7 shows a significant reduction in the maximum norm of the error when Chebyshev interpolation is applied.

Corollary 6.1.1 Theorem 6.3 can be applied easily to functions \(f : [a, b] \to \mathbb{R} \), by calculating the given points \(t_k \) for \(k = 1, \ldots, n \) out of the Chebyshev abscissae \(x_k \) by

\[
t_k = \frac{1}{2}(a + b) + \frac{1}{2}(b - a)x_k
\]
Additional notes:

1. Are polynomials suitable for approximating a given function \(f \)?
 Polynomials are not suitable for functions alternating between strong and weak curvature or poles.

 Possibly: piecewise approximation by polynomials (⇒ spline approximation) or approximation by rational functions.

2. Is a polynomial well defined by the value table’s data?

equidistant given points → Chebyshev abscissae or choose smaller degree of the polynomial ⇒ overdetermined system of linear equations (degree(\(p \)) ≤ 2 \cdot \sqrt{n} in which \(n=\)Number of given points).

The Horner Scheme

By using the following scheme, computing time will be saved in the evaluation of polynomials:

\[
p(x) = \sum_{k=1}^{n} a_k x^{k-1} = a_1 + a_2 x + \ldots + a_n x^{n-1} = a_1 + x(a_2 + x(a_3 + x(\ldots + x(a_{n-1} + x a_n)\ldots)))
\]
6.2 Spline Interpolation

Iteration:

\[
y_0 := a_n \\
y_k := y_{k-1}x + a_{n-k} \quad k = 1, \ldots, n - 1
\]

\[\Rightarrow p(x) = y_{n-1}\]

Computing time:

(n-1) Additions + Multiplications

naive evaluation: \((x^k = x \cdot x \cdot \ldots \cdot x \cdot x)\)

(n-1) additions, (n-2)-times exponentiate, (n-1) multiplications

\[
\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2} = \frac{1}{2}(n^2 - n) \quad \text{multiplications}
\]

Function Approximation vs. Interpolation

In **interpolation** n points \((x_k, y_k)\) with \((k = 1, \ldots, n)\) are given and a function \(p\) (e.g., a polynomial of degree n-1) is sought with \(p(x_k) = y_k\) for \((k = 1, \ldots, n)\).

In the **approximation** of functions, a function \(f : [a, b] \rightarrow \mathbb{R}\) is given (symbolically by a formula or a value table with possibly noisy values) and the task is to find the ”simplest” possible function \(p\), which approximates \(f\) as good as possible with respect to a norm (e.g. maximum norm). The function \(p\) can be a polynomial but also a linear combination of basis functions such as \(p(x) = a_1 \sin x + a_2 \sin 2x + a_3 \sin 3x + \cdots + a_n \sin nx\) where \(a_1, \ldots, a_n\) are to be determined). **Interpolation** can be used as a tool for function **approximation**.

6.2 Spline Interpolation

Given: Value table \((x_k, y_k)\) with \(k = 0, 1, \ldots, n\)

Sought: Interpolating (function) \(s(x)\) with \(s(x_k) = y_k\), and \(s(x)\) must be two times continuously differentiable.

Ansatz: piecewise cubic polynomials

![Figure 6.8: Natural cubic spline through 4 points.](image)
The property of \(s(x) \) to be two times continuously differentiable implies:

\[s'(x) \text{ continuous, } s''(x) \text{ continuous at all inner interval limits.} \]

\(\Rightarrow \) 2 additional conditions for each cubic polynomial

\(\Rightarrow \) the \(n \) subpolynomials uniquely determined by 2 points + 2 derivation conditions.

ansatz:

for \((i=0, \ldots, n-1) \) let

\[
 s(x) = s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i \quad (6.1)
\]

requirements:

\[
 s_i(x_i) = y_i \quad i=0, \ldots, n-1
\]

\[
 s_{n-1}(x_n) = y_n
\]

\[
 s_i(x_{i+1}) = s_{i+1}(x_{i+1}) \quad i=0, \ldots, n-2
\]

\[
 s'_i(x_{i+1}) = s'_{i+1}(x_{i+1}) \quad i=0, \ldots, n-2
\]

\[
 s''_i(x_{i+1}) = s''_{i+1}(x_{i+1}) \quad i=0, \ldots, n-2
\]

\(\Rightarrow \) \(n + 1 + 3(n - 1) = 4n - 2 \) linear equations for \(4n \) unknowns

\(\Rightarrow \) 2 conditions are missing

Additional condition (natural spline):

\[
 s''(x_0) = 0, \quad s''(x_n) = 0 \quad (6.7)
\]

substitution:

\[
 h_i = x_{i+1} - x_i \quad (6.8)
\]

\[
 (6.1), (6.2) \quad \Rightarrow \quad s_i(x_i) = d_i = y_i \quad (6.9)
\]

\[
 (6.1), (6.2), (6.4) \quad \Rightarrow \quad s_i(x_{i+1}) = a_i h_i^3 + b_i h_i^2 + c_i h_i + d_i = y_{i+1} \quad (6.10)
\]

\[
 (6.1) \quad \Rightarrow \quad s'_i(x_i) = c_i \quad (6.11)
\]

\[
 (6.1) \quad \Rightarrow \quad s'_i(x_{i+1}) = 3a_i h_i^2 + 2b_i + c_i \quad (6.12)
\]

\[
 (6.1) \quad \Rightarrow \quad s''_i(x_i) = 2b_i =: y''_i \quad (6.13)
\]

\[
 (6.1) \quad \Rightarrow \quad s''_i(x_{i+1}) = 6a_i h_i + 2b_i = s''_{i+1}(x_{i+1}) = y''_{i+1} \quad (6.14)
\]

\[
 (6.13), (6.14) \Rightarrow a_i = \frac{1}{6h_i} (y''_{i+1} - y''_i) \quad (6.15)
\]

\[
 (6.13) \Rightarrow b_i = \frac{1}{2} y''_i
\]

\[
 (6.9), (6.10), (6.13), (6.14) \Rightarrow c_i = \frac{1}{h_i} (y_{i+1} - y_i) - \frac{h_i}{6} (y''_{i+1} + 2y''_i) \quad (6.16)
\]

\[
 (6.9) \Rightarrow d_i = y_i
\]

if \(y''_i \) are known, then also \(a_i, b_i, c_i, d_i \) are known.

(6.16) in (6.12):

\[
 s'_i(x_{i+1}) = \frac{1}{h_i} (y_{i+1} - y_i) + \frac{h_i}{6} (2y''_{i+1} + y''_i)
\]
6.2 Spline Interpolation

because of

\[
s_i'(x_i) = s_i'(x_i) \quad (\text{Requirement (6.5)})
\]

and

\[
s_i'(x_i) = c_i = \frac{1}{h_i}(y_{i+1} - y_i) - \frac{h_i}{6}(y_{i+1}'' + 2y_i'')
\]

we get

\[
\frac{1}{h_i-1}(y_i - y_{i-1}) + \frac{h_i-1}{6}(2y''_i + y'''_{i-1}) = \frac{1}{h_i}(y_{i+1} - y_i) - \frac{h_i}{6}(y_{i+1}'' + 2y_i'')
\]

Sorting of the \(y''\)-variables to the left results in

\[
h_i-1y'''_{i-1} + 2(h_i-1 + h_i)y''_i + h_iy'''_{i+1} = \frac{6}{h_i}(y_{i+1} - y_i) - \frac{6}{h_i-1}(y_i - y_{i-1})
\]

for \(i = 1, 2, \ldots, n-1\).

linear system for \(y''_1, y''_2, \ldots, y''_{n-1}\)

\(y''_0, y''_n\) arbitrarily choosable!

\(y''_0 = y''_n = 0\): natural spline

Example 6.6 \(n = 5\)

\[
\begin{pmatrix}
2(h_0 + h_1) & h_1 & 0 & 0 \\
h_1 & 2(h_1 + h_2) & h_2 & 0 \\
0 & h_2 & 2(h_2 + h_3) & h_3 \\
0 & 0 & h_3 & 2(h_3 + h_4)
\end{pmatrix} \cdot \begin{pmatrix}
y''_1 \\
y''_2 \\
y''_3 \\
y''_4
\end{pmatrix} = \begin{pmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4
\end{pmatrix}
\]

with

\[
r_i = \frac{6}{h_i}(y_{i+1} - y_i) - \frac{6}{h_i-1}(y_i - y_{i-1})
\]

coefficient matrix is tridiagonal

Example 6.7 We determine a natural spline interpolant through the points \((0, 0), (1, 1), (2, 0), (3, 1)\). \(n = 3\) and \(h_0 = h_1 = 1\). The coefficient matrix reads

\[
\begin{pmatrix}
2(h_0 + h_1) & h_1 \\
h_1 & 2(h_1 + h_2)
\end{pmatrix} = \begin{pmatrix}
4 & 1 \\
1 & 4
\end{pmatrix}
\]

with the right hand side

\[
r_1 = 6(y_2 - y_1) - 6(y_1 - y_0) = -12
\]

\[
r_2 = 6(y_3 - y_2) - 6(y_2 - y_1) = 12
\]

yielding

\[
\begin{pmatrix}
4 & 1 \\
1 & 4
\end{pmatrix} \begin{pmatrix}
y''_1 \\
y''_2
\end{pmatrix} = \begin{pmatrix}
-12 \\
12
\end{pmatrix}
\]
with the solution

\[y''_1 = -4, \quad y''_2 = 4, \quad y''_3 = y''_4 = 0 \]

Inserting in (6.16) gives

\[
\begin{align*}
 s_0(x) & = -2/3 x^3 + 5/3 x \\
 s_1(x) & = 4/3 x^3 - 6 x^2 + 23/3 x - 2 \\
 s_2(x) & = -2/3 x^3 + 6 x^2 - 49/3 x + 14.
\end{align*}
\]

with the graph

6.2.1 Correctness and Complexity

Definition 6.2 A \(n \times n \) matrix \(A \) is called **diagonally dominant**, if

\[
|a_{ii}| > \sum_{k=1, k \neq i}^{n} |a_{ik}|
\]

for \(i = 1, 2, \ldots, n \)

Theorem 6.4 A linear system \(A \cdot x = b \) is uniquely solvable, if \(A \) is diagonally dominant. In the Gaussian Elimination neither row nor column swapping is needed.

Theorem 6.5 The computation time for the Gaussian elimination method for a tridiagonal matrix \(A \) is linear in the length \(n \) of \(A \).

Proof: see Exercises

Theorem 6.6 Spline-Interpolation: Let \(x_0 < x_1 < \ldots < x_n \). There is a unique cubic spline interpolant \(s(x) \) with \(y''_0 = y''_n = 0 \) (natural Spline). It can be calculated in linear time \((O(n)) \) by the method described above (by using the tridiagonal matrix algorithm, see exercise).
6.2 Spline Interpolation

The Tridiagonal Algorithm

\[
\begin{pmatrix}
 b_1 & c_1 & 0 & \cdots & 0 \\
 c_1 & \ddots & \ddots & \ddots & \vdots \\
 0 & \ddots & \ddots & \ddots & 0 \\
 \vdots & 0 & \ddots & \ddots & c_{n-1} \\
 0 & \cdots & 0 & c_{n-1} & b_n
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 d_1 \\
 \vdots \\
 d_{n-1} \\
 d_n
\end{pmatrix}
\]

Elimination:
\[
m := c_{k-1}/b_{k-1} \\
b_k := b_k - m \cdot c_{k-1} \\
d_k := d_k - m \cdot d_{k-1}
\]

Backward substitution:
\[
d_n := d_n/b_n \\
d_k := (d_k - c_k d_{k+1})/b_k \\
x_k = d_k
\]

Proof:
1. Existence and uniqueness
Let \(x_0 < x_1 < \ldots < x_n \) \(\Rightarrow h_i = x_{i+1} - x_i > 0 \)
\(\Rightarrow 2(h_{i-1} + h_i) > h_{i-1} + h_i \)
\(\Rightarrow \) matrix diagonally dominant and uniquely solvable
\(\Rightarrow a_i, b_i, c_i, d_i \) uniquely determined
\(\Rightarrow \) spline interpolant uniquely determined

2. Computation time (see Exercises)

Other conditions:
1. \(y_0'' = y_n'' = 0 \) (natural spline)
2. \(y_0'' = s''(x_0), y_n'' = s''(x_n) \) (\(s'' \) given)
3. \(y_0'' = y_1'', y_n'' = y_{n-1}'' \) (\(s'' \) constant on the border)
4. \(s' \) given at the border (best choice if \(s'(x_0), s'(x_n) \) is known)
5. if \(y_0 = y_n : y_0' = y_n', y_0'' = y_n'' \) (periodic condition)

6.2.2 Interpolation of arbitrary curves

Example 6.8 Given: Value table for the construction of an airfoil.

<table>
<thead>
<tr>
<th>k</th>
<th>(x_k)</th>
<th>(y_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_0)</td>
<td>(y_0)</td>
</tr>
<tr>
<td>1</td>
<td>(x_1)</td>
<td>(y_1)</td>
</tr>
<tr>
<td>2</td>
<td>(x_2)</td>
<td>(y_2)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n</td>
<td>(x_n)</td>
<td>(y_n)</td>
</tr>
</tbody>
</table>

Plot of the given points
The curve is **not a function**. Thus spline interpolation is not directly applicable.

⇒ Parametric representation (parameter t):

$$(x_k, y_k)$$

$$(t_k, x_k)$$

$$(t_k, y_k)$$

$(t_k, x_k), (t_k, y_k)$ unique, if (t_k) for $k = 1, \ldots, n$ strictly increasing!

<table>
<thead>
<tr>
<th>k</th>
<th>t_k</th>
<th>x_k</th>
<th>y_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x_0</td>
<td>y_0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>x_1</td>
<td>y_1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>x_2</td>
<td>y_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>x_n</td>
<td>y_n</td>
</tr>
</tbody>
</table>

- Simplest choice of t_k: $t_k = k$
- Ideal choice of t_k: arc length
- Good choice of t_k:

$$

t_0 = 0,
$$
$$
t_k = t_{k-1} + ||P_k - P_{k-1}||
$$
$$
= t_{k-1} + \sqrt{(x_k - x_{k-1})^2 + (y_k - y_{k-1})^2}
$$

$k = 1, 2, \ldots, n$

Calculation of the spline curve

1. Computation of the spline function for $(t_k, x_k) \Rightarrow x(t)$
2. Computation of the spline function for $(t_k, y_k) \Rightarrow y(t)$
3. spline curve defined by:

$$x = x(t)$$
$$y = y(t)$$

for $0 \leq t \leq t_n$
6.3 Method of Least Squares and Pseudoinverse

6.3.1 Minimization according to Gauss

Given: \(n \) measurements, i.e. value pairs \((x_1, y_1), \ldots, (x_n, y_n)\)

Given: function class \(f(x, a_1, \ldots, a_k) = f(x) \quad k \leq n \)

Sought: Values for \(a_1, \ldots, a_k \) such, that

\[
E(f(x_1) - y_1, \ldots, f(x_n) - y_n) = \sum_{i=1}^{n} (f(x_i) - y_i)^2
\]

gets minimal!

Simplification: \(f \) is a linear combination of functions:

\[
f(x, a_1, \ldots, a_k) = a_1 f_1(x) + a_2 f_2(x) + \cdots + a_k f_k(x) \quad (6.18)
\]

E extremal \(\Rightarrow \forall j = 1, \ldots, k : \frac{\partial E}{\partial a_j} = 0 \)

\[
E(\ldots) = \sum_{i=1}^{n} (f(x_i) - y_i)^2 = \sum_{i=1}^{n} (a_1 f_1(x_i) + \cdots + a_k f_k(x_i) - y_i)^2
\]

\[
\frac{\partial E}{\partial a_j} = 2 \sum_{i=1}^{n} \left(\sum_{l=1}^{k} a_l f_l(x_i) - y_i \right) f_j(x_i)
\]

\[
\frac{\partial E}{\partial a_j} = 0 \Rightarrow \sum_{i=1}^{n} \sum_{l=1}^{k} a_l f_l(x_i) f_j(x_i) = \sum_{i=1}^{n} y_i f_j(x_i)
\]

\[
\Rightarrow \sum_{i=1}^{n} a_l \sum_{i=1}^{k} f_l(x_i) f_j(x_i) = \sum_{i=1}^{n} y_i f_j(x_i)
\]

\[
\Leftrightarrow \sum_{l=1}^{k} A_{jl} a_l = b_j \quad \text{for} \quad (j = 1, \ldots, k) \quad (6.19)
\]

linear system of equations for the parameters \(a_1, \ldots, a_k \) (**Normal equations!**)

Solving of the normal equations gives \(a_1, \ldots, a_k \).

Example 6.9 Sought are the coefficients \(a_1, a_2, a_3 \) of the function \(f(x) = a_1 x^2 + a_2 x + a_3 \) using the given points \((0, -1), (2, 0), (3, 2), (4, 1)\).

First, we set up the normal equations:

\[
\sum_{l=1}^{k} A_{jl} a_l = b_j \quad \text{for} \quad (j = 1, \ldots, k)
\]
with
\[A_{jl} = \sum_{i=1}^{n} f_i(x_i) f_j(x_i), \quad b_j = \sum_{i=1}^{n} y_i f_j(x_i). \]

It follows:
\[
A = \begin{pmatrix}
\sum_{i=1}^{n} x_i^4 & \sum_{i=1}^{n} x_i^3 & \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} 1 \\
\sum_{i=1}^{n} x_i^3 & \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} 1 & \\
\sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} 1 & \\
\sum_{i=1}^{n} x_i & \sum_{i=1}^{n} 1 & \\
\sum_{i=1}^{n} 1 & \\
\end{pmatrix} = \begin{pmatrix}
353 & 99 & 29 \\
99 & 29 & 9 \\
29 & 9 & 4 \\
\end{pmatrix}
\]
and
\[
b = \begin{pmatrix}
\sum_{i=1}^{n} y_i x_i^2 \\
\sum_{i=1}^{n} y_i x_i \\
\sum_{i=1}^{n} y_i \\
\end{pmatrix} = \begin{pmatrix}
34 \\
10 \\
2 \\
\end{pmatrix}
\]

The solution of this linear system is \(a_1 = -3/22, a_2 = 127/110, a_3 = -61/55 \), because
\[
\begin{pmatrix}
353 & 99 & 29 \\
99 & 29 & 9 \\
29 & 9 & 4 \\
\end{pmatrix} \begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
\end{pmatrix} = \begin{pmatrix}
34 \\
10 \\
2 \\
\end{pmatrix}
\]

The resulting parabola has the following form:

![Graph of the resulting parabola]

6.3.2 Application: Rectification of Photos

In RoboCup, so-called "OmniCams" are used. These are digital cameras that take a 360-degree picture via a parabolic mirror (see fig. 6.10).

The mirror distorts the image considerably. With the Formula of mirror curvature a formula for conversion of pixel coordinates into real distances on the field can be derived. Because this formula critically depends on adjustments of the camera, the mirror, the image can not be rectified completely. Therefore, to determine the transformation of pixel distances into real distances we approximate an polynomial interpolation. White markings are pasted on the field at a distance of 25cm (fig. 6.11) and the pixels distances to the center are measured. This gives the following value table:

<table>
<thead>
<tr>
<th>dist. d [mm]</th>
<th>0</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2250</th>
<th>2500</th>
<th>2750</th>
<th>3000</th>
<th>3250</th>
<th>3500</th>
<th>3750</th>
<th>4000</th>
<th>4250</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel dist. x</td>
<td>0</td>
<td>50</td>
<td>108</td>
<td>149</td>
<td>182</td>
<td>209</td>
<td>231</td>
<td>248</td>
<td>263</td>
<td>276</td>
<td>287</td>
<td>297</td>
<td>305</td>
<td>313</td>
<td>319</td>
<td>325</td>
<td>330</td>
<td>334</td>
</tr>
</tbody>
</table>
Figure 6.10: The RoboCup robot Kunibert with upward-pointing camera and mirror (left) and a distorted picture of the field.

Now a polynomial of degree 6 (calculated with the method of least squares) is fitted to the points. We get:

\[d(x) = 3.02 \cdot 10^{-11} \cdot x^6 - 2.57 \cdot 10^{-8} \cdot x^5 + 8.36 \cdot 10^{-6} \cdot x^4 - 1.17 \cdot 10^{-3} \cdot x^3 + 6.85 \cdot 10^{-2} \cdot x^2 + 3.51 \cdot x + 6.79 \cdot 10^{-1} \]

Fig. 6.12 shows the image before and after the transformation.

Theorem 6.7 The normal equations are uniquely solvable if and only if the vectors

\[
\begin{pmatrix}
 f_1(x_1) \\
 \vdots \\
 f_1(x_n)
\end{pmatrix}, \ldots, \begin{pmatrix}
 f_k(x_1) \\
 \vdots \\
 f_k(x_n)
\end{pmatrix}
\]

are linearly independent.
Function Approximation

Figure 6.12: Modified image after edge detection (left) and the rectified image after application of the transformation (right).

\[f_1(x) \]
\[f_2(x) \]
\[x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \ldots x_n \]
\[y \]

\[
\begin{pmatrix}
 f_2(x_1) \\
 \vdots \\
 f_2(x_n)
\end{pmatrix}
= 2
\begin{pmatrix}
 f_1(x_1) \\
 \vdots \\
 f_1(x_n)
\end{pmatrix}
\]

\(f_1 \) and \(f_2 \) are \textbf{not} linearly independent on the grid \((x_1, \ldots, x_n)\).

Proof:

Normal equations uniquely solvable \(\iff\) \(A\) non-singular

\[
A_{ji} = \sum_{i=1}^{n} f_i(x_i)f_j(x_i)
\]

\(\iff\) \(A = M^T M\) with \(M = \begin{pmatrix}
 f_1(x_1) & \cdots & f_k(x_1) \\
 \vdots & \ddots & \vdots \\
 f_1(x_n) & \cdots & f_k(x_n)
\end{pmatrix}\)

\textit{Assumption:} \(M^T M\) is singular \(\Rightarrow\) \(\exists z \neq 0 : M^T M z = 0\)

\(\Rightarrow z^T M^T M z = \|Mz\|_2^2 = 0\)

\(\Rightarrow Mz = 0 \Rightarrow \sum_{i=1}^{k} a_i z_i = 0 \; (a_i = i\text{-th column of } M)\)

\(\Rightarrow\) columns of \(M\) are linearly dependent

\(\Rightarrow\) contradiction to the premise of Theorem 6.7

Example 6.10 We now show that the method of least squares is actually applicable in example 6.9 and that the coefficients are uniquely determined.
According to Theorem 6.7 the following vectors must be linearly independent:

\[v_1 = \begin{pmatrix} f_1(x_1) \\ \vdots \\ f_1(x_4) \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 9 \\ 16 \end{pmatrix}, \quad v_2 = \begin{pmatrix} f_2(x_1) \\ \vdots \\ f_2(x_4) \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad v_3 = \begin{pmatrix} f_3(x_1) \\ \vdots \\ f_3(x_4) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \]

If \(v_1, v_2, v_3 \) are linearly independent, there must be real numbers \(a, b, c \neq 0 \), such that

\[a \begin{pmatrix} 0 \\ 4 \\ 9 \\ 16 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0. \]

Assume there are such Numbers \(a, b, c \). Then it follows immediately \(c = 0 \) out of which

\[a \begin{pmatrix} 4 \\ 9 \\ 16 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 0. \]

follows. But this means, \(v_1 \) must be a multiple of \(v_2 \). This is obviously not the case. So \(v_1, v_2, v_3 \) are linearly independent.

6.3.3 Special Case: Straight Line Regression

regression line \(f(x, a, b) = ax + b \)

\[E = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \]

\[\frac{\partial E}{\partial a} = 2 \sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \]

\[\frac{\partial E}{\partial b} = 2 \sum_{i=1}^{n} (ax_i + b - y_i) = 0 \]

\[a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \]

\[a \sum_{i=1}^{n} x_i + nb = \sum_{i=1}^{n} y_i \]

Solution:

\[a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}; \quad b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2} \]

Remains to be shown: The solution \((a, b) \) of grad\(E = 0 \) is a minimum!
6.3.4 Statistical Justification

The method of least squares can be justified well with statistical methods. Here this is done only for one special case. Let \(f(x) = c \) be the constant function and \(c \) be sought.

\[
E = \sum_{i=1}^{n} (f(x_i) - y_i)^2 = \sum_{i=1}^{n} (c - y_i)^2
\]

\[
\frac{\partial E}{\partial c} = 2 \sum_{i=1}^{n} (c - y_i) = 2 \left(\sum_{i=1}^{n} c - \sum_{i=1}^{n} y_i \right)
\]

\[
= 2 \left(nc - \sum_{i=1}^{n} y_i \right) = 0
\]

\[
\Rightarrow nc = \sum_{i=1}^{n} y_i
\]

\[
c = \frac{1}{n} \sum_{i=1}^{n} y_i \quad \text{arithmetic mean}
\]

Errors of the coefficients \(a_i \)

Because of measurement errors in \((x_i, y_i) \), the coefficients \(a_1, \ldots, a_k \) are erroneous. Calculation of the errors \(\Delta a_1, \ldots, \Delta a_k \) out of \(\Delta y_1, \ldots, \Delta y_n \) with the law of error propagation (maximum error).\(^1\)

\[
\Delta a_i = \sum_{j=1}^{n} \left| \frac{\partial a_i}{\partial y_j} \right| \Delta y_j
\]

For many measurements, the formula for the maximum error gives a too large value. A better approximation is obtained by the formula for the mean Error

\[
\Delta a_i = \sqrt{\sum_{j=1}^{n} \left(\frac{\partial a_i}{\partial y_j} \right)^2 (\Delta y_j)^2}
\]

\(^1\Delta y_i \) is the absolute value of the maximum expected measurement error of variable \(y_i \).
6.3 Method of Least Squares and Pseudoinverse

Special Case Straight Line Regression:

\[
\frac{\partial a}{\partial y_j} = \frac{1}{N} \left(nx_j - \sum_{i=1}^{n} x_i \right) \\
\frac{\partial b}{\partial y_j} = \frac{1}{N} \left(\sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right) x_j \right)
\]

with \(N = n \sum x_i^2 - \left(\sum x_i \right)^2 \)

\[
\Delta a = \sum_{j=1}^{n} \left| \frac{\partial a}{\partial y_j} \right| \Delta y_j
\]

\[
\Delta b = \sum_{j=1}^{n} \left| \frac{\partial b}{\partial y_j} \right| \Delta y_j
\]

Nonlinear Regression (Examples):

Power function:

\[
v = c \cdot u^d \quad \text{Constants } c, d \text{ sought!} \\
\log v = \log c + d \log u
\]

\[
y := \log v, x := \log u \Rightarrow a_1 = \log c, a_2 = d \\
y = a_1 + a_2 x
\]

Exponential function:

\[
v = Ae^{bu} \quad A, b \text{ sought} \\
\ln v = \ln A + bu
\]
\[y := \ln v, \quad x := u, \quad \Rightarrow \quad a_1 = \ln A, \quad a_2 = b \]
\[y = a_1 + a_2 x \]

6.3.5 Multidimensional Least Squares

The method presented so far is good for the approximation of functions \(f : \mathbb{R} \rightarrow \mathbb{R} \), i.e. for one-dimensional functions with one-dimensional argument. In the setting of Equation 6.18 we determine the coefficients \(a_1, \ldots, a_k \) of a linear combination of one-dimensional basis functions \(f_1, \ldots, f_k \):

\[
 f(x) = a_1 f_1(x) + \cdots + a_k f_k(x) = a^T f(x). \tag{6.20}
\]

Now, there is a very easy generalization of this ansatz to multidimensional input. We just replace the one-dimensional \(x \) by a vector \(\mathbf{x} \) to obtain

\[
 f(\mathbf{x}) = a_1 f_1(\mathbf{x}) + \cdots + a_k f_k(\mathbf{x}) = a^T f(\mathbf{x}).
\]

In the derivation of the normal equations, proof, etc. there are no changes other than replacing \(x \) by a vector.

A different way to get into the multidimensional world is the ansatz

\[
 f(\mathbf{x}) = a_1 x_1 + \cdots + a_k x_k = a^T \mathbf{x}.
\]

The advantage here is that we do not have to worry about the selection of the basis functions \(f_i \). But there is no free lunch. The drawback is the very limited power of the linear approximation.

6.3.6 A More General View

We still want to fit a function

\[
 f(\mathbf{x}) = a_1 f_1(\mathbf{x}) + \cdots + a_k f_k(\mathbf{x}) = a^T f(\mathbf{x})
\]

with \(k \) unknown parameters \(a_1, \ldots, a_k \) through the \(n \) data points \((\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\). If we substitute all the points into the ansatz, requiring our function to hit all \(n \) points, i.e.

\[
 f(\mathbf{x}_i) = y_i,
\]

we get the linear system

\[
 a_1 f_1(\mathbf{x}_1) + \cdots + a_k f_k(\mathbf{x}_1) = y_1 \\
 \vdots \quad \vdots \quad \vdots \quad \vdots \\
 a_1 f_1(\mathbf{x}_n) + \cdots + a_k f_k(\mathbf{x}_n) = y_n. \tag{6.21}
\]

If we define the \(n \times k \)-matrix \(\mathbf{M} \) as

\[
 M_{ij} = f_j(\mathbf{x}_i),
\]

Equation 6.21 reads

\[\mathbf{M} \cdot \mathbf{a} = \mathbf{y}. \]

For \(n > k \) the system is overdetermined and normally has no solution. In the next section, we will show how to find an approximate solution by using the method of least squares.
For the case \(n = k \) we may get a unique solution, because here \(M \) is a square matrix. If we use for \(j = 0, \ldots, k \) the basis functions
\[
f_j(x) = x^j,
\]
we end up with the Vandermonde matrix from Section ??.

6.3.7 Solving Overdetermined Linear Systems

The linear system
\[
\begin{align*}
x_1 + x_2 + x_3 &= 1 \\
x_1 + x_2 &= 1 \\
x_1 + x_3 &= 1 \\
x_2 + x_3 &= 1
\end{align*}
\]
is not solvable, because it is overdetermined. Even though we have to accept this fact, we can ask, which vector \(x \) fulfills the linear system best. This can be formalized as follows:

Given, an overdetermined linear system
\[
M x = y
\]
with \(n \) equations and \(k < n \) unknowns \(x_1, \ldots, x_k \). \(M \) is a \(n \times k \) matrix, \(x \in \mathbb{R}^k \) and \(y \in \mathbb{R}^n \). Obviously, in general, there is no vector \(x \), for which \(M x = y \). Therefore we are looking for a vector \(x \), which makes the left side as good as possible equal to the right side. That is, for which \(M x \approx y \), or for which
\[
\left\| M x - y \right\|_2 = \sqrt{(M x - y)^T(M x - y)}
\]
gets minimal. It also follows that \((M x - y)^T(M x - y) \) gets minimal. So
\[
\sum_{i=1}^{n} ((M x)_i - y_i)^2 = \sum_{i=1}^{n} \left(\sum_{l=1}^{k} M_{il} x_l - y_i \right)^2
\]
must be minimal. To determine the minimum we set all partial derivatives equal to zero:
\[
\frac{\partial}{\partial x_j} \sum_{i=1}^{n} \left(\sum_{l=1}^{k} M_{il} x_l - y_i \right)^2 = 2 \sum_{i=1}^{n} \left(\sum_{l=1}^{k} M_{il} x_l - y_i \right) M_{ij} = 0
\]
and get after multiplying out
\[
\sum_{i=1}^{n} \sum_{l=1}^{k} M_{il} M_{ij} x_l = \sum_{i=1}^{n} M_{ij} y_i
\]
or
\[
\sum_{l=1}^{k} \left(\sum_{i=1}^{n} M_{ji}^T M_{il} \right) x_l = \sum_{i=1}^{n} M_{ji}^T y_i
\]
or as a vector equation
\[
M^T M x = M^T y. \tag{6.22}
\]
Therewith we have derived the following theorem
Theorem 6.8 Let an overdetermined linear system \(Mx = y \) with \(x \in \mathbb{R}^k \), \(y \in \mathbb{R}^n \) \((n > k)\) and the \(n \times k \) matrix \(M \) be given. The solution \(\hat{x} \) with least squared error can be determined by solving the linear system

\[
M^T M \hat{x} = M^T y.
\]

This system has a unique solution if and only if the matrix \(M \) has full rank (This proposition is equivalent to theorem 6.7.).

Please note that Equation 6.22 is identical to the normal equations (Equation 6.19, proof as exercise.) This linear system can be rewritten into

\[
\hat{x} = (M^T M)^{-1} M^T y.
\]

If \(M \) is invertible and the system \(Mx = y \) is uniquely solvable, then the solution \(x \) can be calculated by

\[
x = M^{-1} y.
\]

Comparing this equation with the above for \(\hat{x} \), it is clear why the square matrix

\[
(M^T M)^{-1} M^T
\]

is called pseudoinverse of \(M \). The matrix \(M^T M \) is the so called Gram matrix of \(M \). Now we apply the theorem to the example at the beginning of the section which reads

\[
\begin{pmatrix}
111 \\
110 \\
101 \\
011
\end{pmatrix}x = \begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}.
\]

Application of Theorem 6.8 delivers

\[
M^T = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} = \begin{pmatrix}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{pmatrix}
\]

and the equation

\[
\begin{pmatrix}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{pmatrix} \cdot \hat{x} = \begin{pmatrix}
3 \\
3 \\
3
\end{pmatrix}
\]

with the solution \(\hat{x} = (\frac{3}{7}, \frac{3}{7}, \frac{3}{7})^T \).

6.3.8 Solving Underdetermined Linear Systems

Let

\[
Mx = y
\]

be an underdetermined linear system with \(n \) equations and \(k > n \) unknowns \(x_1, \ldots, x_k \). So \(M \) is a \(n \times k \) matrix, \(x \in \mathbb{R}^k \) and \(y \in \mathbb{R}^n \). Obviously, there are in general infinitely many vectors \(x \), with \(Mx = y \). So we can choose any one of these vectors. One way for this choice is to choose out of the set of solution vectors \(x \) one with minimal square norm \(\|x\|^2 \).
The task to determine such a vector, can also be formulated as constrained extremum problem. A minimum of $\|x\|^2$ under n constraints $Mx = y$ is sought. With the method of Lagrange parameters it is

$$\|x\|^2 + \lambda^T(y - Mx)$$

For this scalar function, the gradient must become zero:

$$\nabla (\|x\|^2 + \lambda^T(y - Mx)) = 2x - M^T \lambda = 0$$

Multiplying the second equation from the left with M results in

$$2Mx - MM^T \lambda = 0.$$

Insertion of $Mx = y$ leads to

$$2y = MM^T \lambda$$

and

$$\lambda = 2(MM^T)^{-1}y.$$

With $2x = M^T \lambda$, we get

$$x = 1/2 M^T \lambda = M^T (MM^T)^{-1} y.$$ (6.23)

The matrix $MM^T (MM^T)^{-1}$ is now a new pseudoinverse.

6.3.9 Application of the Pseudoinverse for Function Approximation

Let k basis functions f_1, \ldots, f_k and n data points $(x_1, y_1), \ldots, (x_n, y_n)$ be given. We want to determine parameters $a_1 \ldots a_k$ for

$$f(x) = a_1 f_1(x) + \ldots + a_k f_k(x),$$

such that for all x_i the equation $f(x_i) = y_i$ is fulfilled “as good as possible”. For the three cases $n < k$, $n = k$ and $n > k$ we present examples. First, we determine the seven coefficients of the polynomial

$$f(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3 + a_5 x^4 + a_6 x^5 + a_7 x^6$$

through the points (1,1), (2,1), (3,1), (4,1), (5,4).

Inserting the points yields the underdetermined system of equations

$$
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 & 32 & 64 \\
1 & 3 & 9 & 27 & 81 & 243 & 729 \\
1 & 4 & 16 & 64 & 256 & 1024 & 4096 \\
1 & 5 & 25 & 125 & 625 & 3125 & 15625
\end{pmatrix}
\cdot
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
a_7
\end{pmatrix}
=
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix}.
$$

Computing the pseudoinverse and solving for a yields

$$a^T = (0.82, 0.36, -0.092, -0.23, 0.19, -0.056, 0.0055).$$

The result is shown in Figure 6.15, left. We recognize that here, despite the relatively high degree of the polynomial a very good approximation is achieved, (why?).
Reducing the degree of the polynomial to four, gives a quadratic matrix. It consists of the first five columns of the matrix above and the system becomes uniquely solvable with

\[a^T = (4, -6.25, 4.38, -1.25, 0.125). \]

In Figure 6.15 (middle) oscillations can be seen, which are due to significantly larger absolute values of the coefficients.

After a further reduction of the polynomial to two, only the first three columns of the matrix remain and the solution via pseudoinverse delivers the least squares parabola with the coefficients

\[a^T = (2.8, -1.97, 0.429) \]

as shown on the right in fig. 6.15.

Figure 6.15: Polynomial fitted to data points in the underdetermined (\(k = 7, n = 5\), left), unique (\(k = 5, n = 5\), center) and overdetermined (\(k = 3, n = 5\), right) case.

We see that the work with underdetermined problems can be quite interesting and can lead to good results. Unfortunately this is not always the case. If we try for example, like in the example of the polynomial interpolation of fig. 6.7 with fixed number of 11 given points, to increase the degree of the polynomial, then, unfortunately, the oscillations increase too, instead of decreasing (see fig. 6.16). The parametric methods usually require some manual influencing. In the next section we describe Gaussian processes, a method that works very elegantly and requires minimal manual adjustments.

Figure 6.16: Ordinary Chebyshev interpolation (left and Figure 6.7) with 11 points leading to a Polynomial of degree 10 and the solution of the underdetermined system for a polynomial of degree 12 with the same points (right) yielding somewhat higher error.
6.3.10 Summary

With the method of least squares and minimizing the square of the solution \(x\), we have procedures to solve over and underdetermined linear systems. But there are also other methods. For example, in the case of underdetermined systems of equations, instead of determining \(\|x\|^2\), we could e.g. maximize the entropy

\[- \sum_{i=1}^{k} x_i \ln x_i\]

or determine an extremum of another function \(\|x\|\). The methods presented here are used mainly, because the equations to be solved remain linear.

The computing time for calculating the pseudoinverse can be estimated in underdetermined and in overdetermined case by \(O(k^2n + k^3)\). Slightly faster than the calculation of \((MM^T)^{-1}\) it is using the QR decomposition or the Singular Value Decomposition (SVD). Then the time complexity is reduced to \(O(k^2n)\).

The here calculated pseudoinverses are so-called Moore-Penrose pseudoinverses. That is, in the case of a matrix \(M\) with real-valued coefficients, the pseudoinverse \(M^+\) has the following features:

\[MM^+M = M\]
\[M^+MM^+ = M^+\]

Applied on \(M\) from the left \(MM^+\) behaves indeed like an identity matrix.

6.4 Linear Regression – Summary

We want to fit a function

\[f(x) = a_1 f_1(x) + \cdots + a_k f_k(x) = a^T f(x)\]

with \(k\) unknown parameters \(a_1, \ldots, a_k\) through the \(n\) data points \((x_1, y_1), \ldots, (x_n, y_n)\). If we substitute all the points into the ansatz, requiring our function to hit all \(n\) points, i.e.

\[f(x_i) = y_i,\]

we get the linear system

\[a_1 f_1(x_1) + \cdots + a_k f_k(x_1) = y_1\]
\[\vdots \quad \vdots \quad \vdots \]
\[a_1 f_1(x_n) + \cdots + a_k f_k(x_n) = y_n.\]

In matrix notation we get

\[M \cdot a = y\]
with \(M_{ij} = f_j(x_i)\),

\(n > k\) the system is overdetermined and normally has no solution.
\(n < k\) the system is underdetermined and normally has infinitely many solutions.
We examined different solutions for the linear regression problem:

Overdetermined case:
- Least Squares / Pseudoinverse
- Maximum Likelihood
- Bayesian Linear Regression

Underdetermined case:
- Pseudoinverse

Methods for solving $M \cdot a = y$

Overdetermined case:

<table>
<thead>
<tr>
<th>Least Squares / Pseudoinverse:</th>
<th>$\hat{a} = (M^T M)^{-1} M^T y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Likelihood:</th>
<th>$\hat{a} = (M^T M)^{-1} M^T y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximize $p(X</td>
<td>a)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bayesian lin. Regression (MAP = maximum posterior probab.):</th>
<th>$\hat{a} = (\lambda I + M^T M)^{-1} M^T y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximize $p(a</td>
<td>X)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regularized Least Squares:</th>
<th>$\hat{a} = (\lambda I + M^T M)^{-1} M^T y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $</td>
<td></td>
</tr>
</tbody>
</table>

design matrix $X = (x_1, \ldots, x_n)$

Methods for solving $M \cdot a = y$

Underdetermined case:
- minimize $||a||_2$ under the constraint $M a - y = 0$. Solution: $\hat{a} = (MM^T)^{-1} My$
- compare (AI lecture)[Ert11]: maximize Entropy of probability distribution under given contraints

6.5 Singular Value Decomposition (SVD)

In Theorem 6.8 we have seen that for the computation of the pseudoinverse of an overdetermined matrix M the square matrix $M^T M$ must be invertible. Analogously, due to Equation 6.23, for an underdetermined matrix M the square matrix MM^T has to be invertible. In both cases, the resulting square matrix is invertible if M has full rank.

We will now present an even more general method for determining a pseudoinverse even if M has not full rank.
6.5 Singular Value Decomposition (SVD)

Reminder: Linear Algebra

Recommended preparation: Gilbert Strang Video Lectures

- Lecture 21: Eigenvalues and eigenvectors
- Lecture 25: Symmetric matrices and positive definiteness

on http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010

Definition 6.3 Two vectors x_i, x_j are called orthonormal if

$$x_i^T x_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{else} \end{cases}.$$

A matrix A is called orthogonal, if its columns are orthonormal.

Some basic facts:

- For any orthogonal matrix A we have $A^T A = I$.
- No eigenvalues of an invertible $n \times n$ matrix are zero.
- If all eigenvalues of an $n \times n$ matrix are pairwise different, then the eigenvectors are linearly independent.
- A symmetric matrix has only real eigenvalues.
- The eigenvectors of a symmetric matrix are orthogonal. They can be chosen to be orthonormal.

Diagonalization of symmetric matrices

Eigenvalue equations:

$$A x_1 = \lambda_1 x_1 \quad \ldots \quad A x_n = \lambda_n x_n.$$

Combing all n equations yields

$$A (x_1, \ldots, x_n) = (\lambda_1 x_1, \ldots, \lambda_n x_n) = (x_1, \ldots, x_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

With $Q = (x_1, \ldots, x_n)$ and $A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$ we get

$$AQ = QA$$

and $A = QAQ^T$.

Theorem 6.9 (Spectral theorem)

- Every symmetric matrix $A \in \mathbb{R}^{n \times n}$ has the factorization $A = QAQ^T$.
- The columns of Q are the eigenvectors.
- The eigenvectors are orthogonal.
- A is diagonal with the eigenvalues as elements.
Singular Value Decomposition

Gilbert Strang writes in [Str03]:

“I give you my opinion directly. The SVD is the climax of this linear algebra course. I think of it as the final step in the Fundamental Theorem. First come the dimensions of the four subspaces. Then their orthogonality. Then the orthonormal bases which diagonalize A. It is all in the formula $M = U \Sigma V^T$. You have made it to the top.”

We now release all constraints on the matrix M and

- $M \in \mathbb{R}^{m \times n}$ has not full rank.
- $M^T M$ is symmetric, but not invertible.

Eigenvalue equation:

$$M^T M v_i = \sigma_i^2 v_i$$

$$v_i^T M^T M v_i = ||M v_i||^2 = \sigma_i^2 v_i^T v_i = \sigma_i^2 \geq 0.$$

Thus $M^T M$ is positive definite and $||M v_i|| = \sigma_i \geq 0$. Now

$$M M^T M v_i = \sigma_i^2 M v_i$$

shows that $M M^T$ has the same eigenvalues σ_i^2 with the unit eigenvectors

$$u_i = M v_i / \sigma_i.$$

This leads to ($r = \text{rank of } M$)

$$M v_1 = \sigma_1 u_1 \ldots \ M v_r = \sigma_r u_r$$

and

$$M \begin{pmatrix} v_1 \ldots v_r \end{pmatrix} = \begin{pmatrix} u_1 \ldots u_r \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \sigma_r & 0 \end{pmatrix}.$$

Adding orthonormal vectors v_i from the nullspace of M and orthonormal vectors u_i from the nullspace of M^T:

$$M \begin{pmatrix} v_1 \ldots v_r \ldots v_n \end{pmatrix} = \begin{pmatrix} u_1 \ldots u_r \ldots u_m \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \sigma_r & 0 \end{pmatrix}.$$

The dimensions of these matrices are

$$(m \times n) \ (n \times n) = (m \times m)(m \times n).$$

Written in matrix notation, we get $M V = U \Sigma$ with the orthogonal matrices V and U and

$$M = U \Sigma V^T = u_1 \sigma_1 v_1^T + \ldots + u_r \sigma_r v_r^T.$$

The pseudoinverse of M now can easily be computed by

$$M^+ = V \Sigma^+ U^T = v_1 \frac{1}{\sigma_1} u_1^T + \ldots + v_r \frac{1}{\sigma_r} u_r^T.$$

(6.24)

(6.25)
with the \(n \times m \) matrix

\[
\Sigma^+ = \begin{pmatrix}
\frac{1}{\sigma_1} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \frac{1}{\sigma_r} & 0 \\
\vdots & \cdots & \vdots & \ddots \\
0 & \cdots & 0 & 0
\end{pmatrix}.
\]

Summary

The simplest way to compute the SVD is

- \(U \in \mathbb{R}^{m \times m} \): Eigenvector matrix of \(MM^T \).
- \(\Sigma \in \mathbb{R}^{m \times n} \) being the positive square roots of the eigenvalues of either \(MM^T \) or \(M^T M \).
- \(V \in \mathbb{R}^{n \times n} \): Eigenvector matrix of \(M^T M \).
- Substitute \(U, V \) and \(\Sigma \) in equation 6.25 to get \(M^+ \).
- after applying SVD we get \(M^+ = V \Sigma^+ U^T \).
- To solve \(M \cdot a = y \) for \(a \) we approximate \(\hat{a} = M^+ y \)

Regularized Version of SVD

- To solve \(M \cdot a = y \) for \(a \) we approximate \(\hat{a} = M^+ y \)

With regularization term:

choose a parameter \(\gamma > 0 \) and solve

\[
\hat{a} = (\gamma I + M^+ M)^{-1} M^+ y
\]

Example

Find the SVD decomposition of the matrix \(M = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \).

\[
MM^T = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}
\]

(6.26)

The characteristic polynomial is the determinant \(|MM^T - \lambda I| \). Thus we first have to calculate \(MM^T - \lambda I \),

\[
MM^T - \lambda I = \begin{pmatrix} 17 - \lambda & 8 \\ 8 & 17 - \lambda \end{pmatrix}
\]

(6.27)

The determinant is

\[
|MM^T - \lambda I| = \lambda^2 - 34\lambda + 225 = (\lambda - 25)(\lambda - 9)
\]

(6.28)
The eigenvalues of MM^T are $\sigma_1^2 = 25$ and $\sigma_2^2 = 9$. This means in Σ we have $\sigma_1 = \sqrt{25} = 5$ and $\sigma_2 = \sqrt{9} = 3$. To obtain the eigenvector of MM^T for $\sigma_1^2 = 25$ solve $(MM^T - \lambda I)u_1 = 0$,

$$(MM^T - \lambda_1 I)u_1 = \begin{pmatrix} -8 & 8 \\ 8 & -8 \end{pmatrix} u_1 = 0$$ (6.29)

An obvious eigenvector of the previous matrix is $(1 \ 1)^T$. Normalizing this vector we attain $u_1 = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)^T$. For the second eigenvalue $\sigma_2^2 = 9$, we proceed in the same way and we will find that $u_2 = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^T$, is the second eigenvector of MM^T. Till now we have found the matrices U and Σ in equation 6.24. To solve for V use M^TM. The eigenvalues of M^TM are 25, 9 and 0, and since M^TM is symmetric we know that the eigenvectors will be orthogonal.

For $\lambda = 25$, we have

$$M^TM - 25I = \begin{pmatrix} -12 & 12 & 2 \\ 12 & -12 & -2 \\ 2 & -2 & -17 \end{pmatrix}$$ (6.30)

which row-reduces to $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. An eigenvector is $v_1 = \left(\frac{1}{\sqrt{18}} \frac{1}{\sqrt{2}} 0 \right)^T$.

For $\lambda = 9$, we have

$$M^TM - 9I = \begin{pmatrix} 4 & 12 & 2 \\ 12 & 4 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$ (6.31)

which row reduces to $\begin{pmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$. An eigenvector is $v_2 = \left(\frac{1}{\sqrt{18}} - \frac{1}{\sqrt{18}} \frac{4}{\sqrt{18}} \right)^T$.

For the last eigenvector $\lambda_3 = 0$, we could find a unit vector perpendicular to v_1 and v_2 or solve $(M^TM - \lambda_3 I)v_3 = 0$, then we deduce that $v_3 = \left(\frac{2}{3} - \frac{2}{3} - \frac{1}{3} \right)^T$. So the full SVD of our matrix M could now be written as,

$$M = U \Sigma V^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{18}} & \frac{4}{\sqrt{18}} \end{pmatrix}$$

The pseudoinverse of M is

$$M^+ = V \Sigma^+ U^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{18}} \end{pmatrix}$$

6.6 Outlook on Nonlinear Regression

Reminder: Linear Regression
• Linear Regression: Estimate Parameters for

\[f(x) = a_1 f_1(x) + \cdots + a_k f_k(x) = a^T f(x) \]

- Constraints: \[f(x_i) = a^T f(x_i) = y_i \]
- \[M \cdot a = y \] with \[M_{ij} = f_j(x_i) \].
- Overdetermined! No Solution
- Minimize \(E = ||M a - y||_2 \)
- Error \(E \) on data must become a Minimum: \(\nabla a E = 0 \)
- Solution \(\hat{a} = (M^T M)^{-1} M^T y \)

Nonlinear Regression

- Error \(E \) on data must become a Minimum: \(\nabla a E = 0 \)
- \(\nabla a E = 0 \) is nonlinear!
- Solution: Gradient descent!
- Adjust \(a \) in the direction of steepest descent!

6.7 Exercises

Polynomial Interpolation

Exercise 6.1

a) Let the points \((-1,1), (0,0)\) and \((1,1)\) be given. Determine the interpolation polynomial through these three points.

b) Let the points \((-1,1), (0,0), (1,1)\) and \((2,0)\) be given. Determine the interpolation polynomial through these four points.

Exercise 6.2

a) Write a Matlab or Octave program that calculates a table of all coefficients of the interpolating polynomial of degree \(n \) for any function \(f \) in any interval \([a,b]\). Pass the function name, the degree of the polynomial and the value table as parameters to the program.

b) Write for the value table generation a program for the equidistant case and one for the Chebyshev abscissae.

Exercise 6.3

a) Apply the program of exercise 6.2 to the interpolation of the function \(f(x) := e^{-x^2} \) in the interval \([-2,10]\) and calculate the polynomial up to the 10th degree. The given points are to be distributed "equidistant".
Exercise 6.4
a) Calculate the maximum norm of the deviation between the interpolation polynomial p and f from exercise 6.3 on an equidistant grid with 100 given points.
b) Compare the Equidistant interpolation with the Chebyshev interpolation and with the Taylor series of f of degree 10 (expanded around $x_0 = 0$ and $x_0 = 4$, with respect to maximum norm of the approximation error.

Spline-Interpolation

Exercise 6.5 Given two points $(1, 1)$ and $(2, 0)$ for computing a cubic spline with natural constraints ($y_0'' = y_n'' = 0$).
 a) How many lines and columns has the tri-diagonal matrix for computing the y''-variables?
b) Determine the spline by manually calculating the coefficients a_i, b_i, c_i, d_i

Exercise 6.6 The points $(-1, 1), (0, 0)$ and $(1, 1)$ are given.
 a) Determine the two cubic part splines with natural boundary conditions.
b) Why $s_0(x) = x^2$ and $s_1(x) = x^2$ is not a cubic spline function with natural boundary conditions? Argue unrelated to the correct solution.

Exercise 6.7 How does the coefficient matrix for the spline interpolation change, if instead of the boundary conditions $y_0'' = y_n'' = 0$, the boundary conditions $y_0'' = y_1'', y_n'' = y_{n-1}''$ (second derivative at the border) would be demanded? Change the coefficient matrix of example 6.6 accordingly.

Exercise 6.8 Program the tridiagonal matrix algorithm.

Exercise 6.9 Write a program to calculate a natural cubic spline out of a given value table.

Exercise 6.10 Apply the program from Exercise 6.9 on the interpolation of the function $f(x) := e^{-x^2}$ in the interval $[-2, 10]$ on a equidistant Grid with 11 points.

Exercise 6.11 Iterated Function Systems (IFS):
 a) Calculate the value tables of the two sequences $(x_n), (y_n)$ with

$$
\begin{align*}
x_{n+1} &= a y_n + b \\
y_{n+1} &= c x_n + d \\
x_0 &= y_0 = 1
\end{align*}
$$

 to $n = 20$, where use the parameter values $a = 0.9, b = -0.9, c = -0.9, d = 0.9$.
b) Connect the points $(x_0, y_0) \ldots (x_n, y_n)$ with a cubic natural spline. Select the euclidean distance of the points as parameter for the parametric representation.

Least Squares and Pseudoinverse

Exercise 6.12 With the method of least squares the coefficients a_1, a_2 of the function $f(x) = \frac{a_1}{x^2} + \frac{a_2}{(x-9)^2}$ using the given points $(1, 6), (2, 1), (7, 2), (8, 4)$ are to be determined.
a) Set up the normal equations.

b) Calculate the coefficients a_1, a_2.

c) Draw f in the interval $(0, 9)$ together with the points in a chart.

Exercise 6.13

a) Write a program to determine the coefficients $a_1 \ldots a_k$ of a function $f(x) = a_1 f_1(x) + a_2 f_2(x) + \cdots + a_k f_k(x)$ with the method of least squares. Parameters of the program are a table of data points, as well as a vector with the names of the base functions f_1, \ldots, f_k.

b) Test the program by generating 100 points on a straight line, and then use your program to determine the coefficients of the line. Repeat the test with slightly noisy data (add a small random number (random noise) to the data values).

c) Determine the polynomial of degree 4, which minimizes the sum of the error squares of the following value table (see: http://www.hs-weingarten.de/~ertel/vorlesungen/mathi/mathi-ueb15.txt):

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-16186.1</td>
</tr>
<tr>
<td>9</td>
<td>-2810.82</td>
</tr>
<tr>
<td>10</td>
<td>773.875</td>
</tr>
<tr>
<td>11</td>
<td>7352.34</td>
</tr>
<tr>
<td>12</td>
<td>11454.5</td>
</tr>
<tr>
<td>13</td>
<td>15143.3</td>
</tr>
<tr>
<td>14</td>
<td>13976.</td>
</tr>
<tr>
<td>15</td>
<td>15137.1</td>
</tr>
<tr>
<td>16</td>
<td>10383.4</td>
</tr>
<tr>
<td>17</td>
<td>14471.9</td>
</tr>
<tr>
<td>18</td>
<td>8016.53</td>
</tr>
<tr>
<td>19</td>
<td>7922.01</td>
</tr>
<tr>
<td>20</td>
<td>4638.37</td>
</tr>
<tr>
<td>21</td>
<td>3966.37</td>
</tr>
<tr>
<td>22</td>
<td>2726.68</td>
</tr>
<tr>
<td>23</td>
<td>6916.44</td>
</tr>
<tr>
<td>24</td>
<td>8166.62</td>
</tr>
<tr>
<td>25</td>
<td>10104.</td>
</tr>
<tr>
<td>26</td>
<td>15141.8</td>
</tr>
<tr>
<td>27</td>
<td>3029.29</td>
</tr>
<tr>
<td>28</td>
<td>3866.37</td>
</tr>
<tr>
<td>29</td>
<td>15441.8</td>
</tr>
<tr>
<td>30</td>
<td>3966.37</td>
</tr>
<tr>
<td>31</td>
<td>2273.8</td>
</tr>
<tr>
<td>32</td>
<td>3029.29</td>
</tr>
<tr>
<td>33</td>
<td>2273.8</td>
</tr>
<tr>
<td>34</td>
<td>2500.28</td>
</tr>
<tr>
<td>35</td>
<td>2500.28</td>
</tr>
<tr>
<td>36</td>
<td>29882.6</td>
</tr>
<tr>
<td>37</td>
<td>32719.7</td>
</tr>
<tr>
<td>38</td>
<td>41046.6</td>
</tr>
<tr>
<td>39</td>
<td>37451.1</td>
</tr>
<tr>
<td>40</td>
<td>37332.2</td>
</tr>
<tr>
<td>41</td>
<td>37999.8</td>
</tr>
<tr>
<td>42</td>
<td>37999.8</td>
</tr>
<tr>
<td>43</td>
<td>34301.6</td>
</tr>
<tr>
<td>44</td>
<td>34301.6</td>
</tr>
<tr>
<td>45</td>
<td>34301.6</td>
</tr>
<tr>
<td>46</td>
<td>34301.6</td>
</tr>
<tr>
<td>47</td>
<td>34301.6</td>
</tr>
<tr>
<td>48</td>
<td>34301.6</td>
</tr>
<tr>
<td>49</td>
<td>34301.6</td>
</tr>
<tr>
<td>50</td>
<td>34301.6</td>
</tr>
<tr>
<td>51</td>
<td>34301.6</td>
</tr>
<tr>
<td>52</td>
<td>34301.6</td>
</tr>
<tr>
<td>53</td>
<td>34301.6</td>
</tr>
<tr>
<td>54</td>
<td>34301.6</td>
</tr>
<tr>
<td>55</td>
<td>34301.6</td>
</tr>
<tr>
<td>56</td>
<td>34301.6</td>
</tr>
<tr>
<td>57</td>
<td>34301.6</td>
</tr>
<tr>
<td>58</td>
<td>34301.6</td>
</tr>
<tr>
<td>59</td>
<td>34301.6</td>
</tr>
<tr>
<td>60</td>
<td>34301.6</td>
</tr>
<tr>
<td>61</td>
<td>34301.6</td>
</tr>
<tr>
<td>62</td>
<td>34301.6</td>
</tr>
<tr>
<td>63</td>
<td>34301.6</td>
</tr>
<tr>
<td>64</td>
<td>34301.6</td>
</tr>
<tr>
<td>65</td>
<td>34301.6</td>
</tr>
<tr>
<td>66</td>
<td>34301.6</td>
</tr>
<tr>
<td>67</td>
<td>34301.6</td>
</tr>
<tr>
<td>68</td>
<td>34301.6</td>
</tr>
<tr>
<td>69</td>
<td>34301.6</td>
</tr>
<tr>
<td>70</td>
<td>34301.6</td>
</tr>
<tr>
<td>71</td>
<td>34301.6</td>
</tr>
<tr>
<td>72</td>
<td>34301.6</td>
</tr>
<tr>
<td>73</td>
<td>34301.6</td>
</tr>
<tr>
<td>74</td>
<td>34301.6</td>
</tr>
<tr>
<td>75</td>
<td>34301.6</td>
</tr>
<tr>
<td>76</td>
<td>34301.6</td>
</tr>
<tr>
<td>77</td>
<td>34301.6</td>
</tr>
<tr>
<td>78</td>
<td>34301.6</td>
</tr>
<tr>
<td>79</td>
<td>34301.6</td>
</tr>
<tr>
<td>80</td>
<td>34301.6</td>
</tr>
<tr>
<td>81</td>
<td>34301.6</td>
</tr>
<tr>
<td>82</td>
<td>34301.6</td>
</tr>
<tr>
<td>83</td>
<td>34301.6</td>
</tr>
<tr>
<td>84</td>
<td>34301.6</td>
</tr>
<tr>
<td>85</td>
<td>34301.6</td>
</tr>
<tr>
<td>86</td>
<td>34301.6</td>
</tr>
<tr>
<td>87</td>
<td>34301.6</td>
</tr>
<tr>
<td>88</td>
<td>34301.6</td>
</tr>
<tr>
<td>89</td>
<td>34301.6</td>
</tr>
<tr>
<td>90</td>
<td>34301.6</td>
</tr>
<tr>
<td>91</td>
<td>34301.6</td>
</tr>
<tr>
<td>92</td>
<td>34301.6</td>
</tr>
<tr>
<td>93</td>
<td>34301.6</td>
</tr>
<tr>
<td>94</td>
<td>34301.6</td>
</tr>
<tr>
<td>95</td>
<td>34301.6</td>
</tr>
<tr>
<td>96</td>
<td>34301.6</td>
</tr>
<tr>
<td>97</td>
<td>34301.6</td>
</tr>
<tr>
<td>98</td>
<td>34301.6</td>
</tr>
<tr>
<td>99</td>
<td>34301.6</td>
</tr>
<tr>
<td>100</td>
<td>34301.6</td>
</tr>
</tbody>
</table>

b) Calculate to c) the sum of the squares. Determine the coefficients of a parabola and calculate again the sum of the error squares. What difference do you see?

c) Which method allows you to determine experimentally, at several possible sets of basis functions, the "best"?

d) Find a function which creates an even smaller error.

Exercise 6.14

Given: $(0,2), (1,3), (2,6)$. Determine with the method of least squares the coefficients c and d of the function $f(x) = c \cdot e^{d x}$. Note that the parameter d occurs nonlinear!

Exercise 6.15

a) Change the right hand side of the first system of equations at the beginning of Section 6.3.7, so that it gets uniquely solvable.

b) Which condition must hold, such that a linear system with n unknowns and $m > n$ equations is uniquely solvable?

Exercise 6.16

Use Theorem 6.8 to solve the system of equations $x_1 = 1, x_1 = 2, x_2 = 5, x_2 = 9, x_3 = -1, x_3 = 1$ by the method of least squares.

Exercise 6.17

Show that the computing time for the calculation of the pseudoinverse in sections 6.3.7 and 6.3.8 can be estimated by $O(k^2 n + k^3)$.

Exercise 6.18

Prove that the equation $M^T M x = M^T y$ for the approximate solution of an overdetermined linear system $M x = y$ (Equation 6.22) is equivalent to the normal equations
from the least squares method (Equation 6.19).

Exercise 6.19

a) Show that the pseudoinverse method for overdetermined systems can be applied in the case of \(m = n \) (i.e. square matrix \(M \)) and that it yields the same result as directly solving the linear system \(Mx = y \) under some assumption. What is the assumption?

b) Show that this also holds for the pseudoinverse method for underdetermined systems.

Singular Value Decomposition

Exercise 6.20 Given \(M \),

\[
M = \begin{pmatrix}
8 & 2 & 2 \\
2 & 4 & 1
\end{pmatrix}
\]

a) Perform the SVD decomposition and write \(M \) in the form \(M = U \Sigma V^T \).

b) Compute the pseudoinverse \(M^+ \) of \(M \).

c) Show that \(M^+ \) is a valid (Moore-Penrose) pseudoinverse.

d) Show that the pseudoinverse of \(M \), using the technique of the underdetermined system mentioned in section 6.3.8, is the same as the one computed by SVD.

Exercise 6.21 Given the following Matrix \(M \),

\[
M = \begin{pmatrix}
3 & 6 \\
2 & 4 \\
2 & 4
\end{pmatrix}
\]

a) Show that the pseudoinverse of the matrix \(M \), using the technique of the overdetermined system mentioned in section 6.3.7, is not applicable.

b) Perform the SVD decomposition and write \(M \) in the form \(M = U \Sigma V^T \).

b) Compute the pseudoinverse \(M^+ \) of \(M \).

d) Show that \(M^+ \) is a valid pseudoinverse.

Exercise 6.22 Prove:

a) \(\Sigma^+ \) is a Moore-Penrose-Pseudoinverse of \(\Sigma \).

b) \(M^+ = V \Sigma^+ U^T \) is a Moore-Penrose-Pseudoinverse of \(M \).

c) \(\Sigma^+ \) can’t be determined with \(\Sigma^+ = (\Sigma^T \Sigma)^{-1} \Sigma^T \).

Exercise 6.23 Repeat your function approximation experiments from exercises 6.12 and 6.13 using SVD. Report about your results.
7 Numerical Integration and Solution of Ordinary Differential Equations

7.1 Numerical Integration

Numerical integration is very important in applications, but the analytical (symbolic) integration is always preferable, if possible.

The Trapezoidal Rule

Equidistant partition of \([a, b]\) by \(x_0 = a, \ x_1 = a + h, \ x_2 = a + 2h, \ldots, x_n = a + nh = b\)

Step size: \(h = \frac{(b - a)}{n}\)

Approximation: \(\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \text{Area of a trapezoid} = h \cdot \frac{f(x_{i-1}) + f(x_i)}{2}\)

Theorem 7.1 (Trapezoidal Rule) Let \(f : [a, b] \to \mathbb{R}\) twice continuously differentiable. Then it holds

\[
\int_{a}^{b} f(x) \, dx = h \cdot \left(\frac{f(x_0)}{2} + f(x_1) + \ldots + f(x_{n-1}) + \frac{f(x_n)}{2} \right) - \Delta T(h)
\]

with \(|\Delta T(h)| \leq \frac{(b - a)h^2}{12} \max_{x \in [a, b]} |f''(x)|\)

Proof: From Theorem 6.2 we know that the approximation error for polynomial interpolation of the function \(f\) on the \(n + 1\) points \(x_0, \ldots, x_n\) by a polynomial \(p\) of degree \(n\) is given by

\[
f(x) - p(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)
\]
for a point \(z \in [a, b] \). For linear interpolation of \(f \) with two points \(x_{i-1}, x_i \) this yields

\[
f(x) = p(x) + \frac{f''(z_i)}{2}(x - x_{i-1})(x - x_i)
\]

for \(z_i \in [x_{i-1}, x_i] \). Applying this to the error of the trapezoidal rule on one sub-interval \([x_{i-1}, x_i]\) only we get:

\[
\varepsilon_i = \Delta T(h) = T(h) - \int_{x_{i-1}}^{x_i} f(x) \, dx = T(h) - \int_{x_{i-1}}^{x_i} p(x) \, dx - \int_{x_{i-1}}^{x_i} \frac{f''(z_i)}{2}(x - x_{i-1})(x - x_i) \, dx
\]

Substituting \(x = x_{i-1} + ht \) we evaluate

\[
\int_{x_{i-1}}^{x_i} (x - x_{i-1})(x - x_i) \, dx = h^3 \int_0^1 t(t - 1) \, dt = -\frac{h^3}{6}
\]

and get

\[
\varepsilon_i = \frac{f''(z_i)h^3}{12}.
\]

For the trapezoidal rule on the whole interval \([a, b]\) we get

\[
|\Delta T(h)| = \left| \sum_{i=1}^{n} \varepsilon_i \right| \leq \sum_{i=1}^{n} |\varepsilon_i| = \sum_{i=1}^{n} \frac{|f''(z_i)|h^3}{12} \leq \sum_{i=1}^{n} \frac{h^3}{12} \max_{x \in [a, b]} \{|f''(x)|\}
\]

\[
= \frac{nh^3}{12} \max_{x \in [a, b]} \{|f''(x)|\} = \frac{(b - a)h^2}{12} \max_{x \in [a, b]} \{|f''(x)|\}
\]

and the proof is complete. \(\square\)

Richardson Extrapolation

Note: Halving of \(h \) (\(2h \to h \)) doubles the computational effort (\(2^n \) function evaluations). The error is reduced by factor 4: \(\Delta T(2h) \approx 4\Delta T(h) \).
7.1 Numerical Integration

\[T(h) = \int_a^b f(x)dx + \Delta T(h) \approx \int_a^b f(x)dx + ch^2 \]
\[T(2h) = \int_a^b f(x)dx + 4\Delta T(h) \approx \int_a^b f(x)dx + 4ch^2 \]

\[T(2h) - T(h) \approx 3\Delta T(h) \quad \Rightarrow \quad \Delta T(h) \approx \frac{1}{3} (T(2h) - T(h)) \]
\[\Rightarrow \int_a^b f(x)dx = T(h) - \Delta T(h) \approx T(h) - \left[\frac{1}{3} (T(2h) - T(h)) \right] \]

\[\int_a^b f(x)dx \approx \frac{4}{3} T(h) - \frac{1}{3} T(2h) \]

This formula gives a better approximation than \(T(h) \) and is called Richardson Extrapolation.

Repeated Richardson Extrapolation

We can generalize the Richardson Extrapolation to any calculation where we know the asymptotic behaviour of some function \(F \) to be calculated for \(h \to 0 \) as

\[F(h) = a_0 + a_1 h^p + O(h^r), \]

where \(a_0 = F(0) \) is the desired value, \(a_1 \) is unknown and \(p < r \). Suppose we know \(F \) for \(h \) and \(qh \):

\[F(h) = a_0 + a_1 h^p + O(h^r), \]
\[F(qh) = a_0 + a_1(qh)^p + O(h^r), \]

Solving for \(a_0 \) yields

\[F(0) = a_0 = F(h) + \frac{F(h) - F(qh)}{q^p - 1} + O(h^r) \]

This formula leads to a reduction of the error from \(O(h^p) \) to \(O(h^r) \).

Theorem 7.2 If we know the complete expansion of \(F \) as

\[F(h) = a_0 + a_1 h^{p_1} + a_2 h^{p_2} + a_3 h^{p_3} + \ldots, \]

we recursively compute

\[F_1(h) = F(h) \quad \text{and} \quad F_{k+1}(h) = F_k(h) + \frac{F_k(h) - F_k(qh)}{q^{p_k} - 1} \]

Then \(F_n(h) = a_0 + a_1^{(n)} h^{p_0} + a_2^{(n)} h^{p_1} + \ldots. \)

An inductive proof can be found e.g. in [TDB03].
The Rhomberg Method

It can be shown \[\text{TDB03} \] that for the trapezoidal rule we have

\[
T(h) = \int_a^b f(x)\,dx + a_1 h^2 + a_2 h^4 + a_3 h^6 + \ldots
\]

We apply repeated Richardson extrapolation with \(q = 2 \), and \(p_k = 2k \) (the powers of term \(h \) in \(T(h) \) for \(k = 1, 2, \ldots \) and so on):

\[
T_1(h) = T(h)
\]

\[
T_{k+1}(h) = T_k(h) + \frac{\Delta_k}{2^{2k} - 1} \quad \text{with} \quad \Delta_k = T_k(h) - T_k(2h)
\]

Example 7.1 We want to approximate

\[
\int_0^0.8 \frac{\sin x}{x} \,dx
\]

and get

\[
\begin{array}{ccccccc}
 h & T_1(h) & \Delta_1/3 & T_2(h) & \Delta_2/15 & T_3(h) & \Delta_3/63 & T_4(h) \\
0.8 & 0.758678 & & & & & \\
 & 0.003360 & & & & & \\
0.4 & 0.768757 & 0.77211714 & & & & \\
 & 0.000835 & -0.00000133 & & & & \\
0.2 & 0.771262 & 0.77209711 & 0.772095771 & & & \\
 & 0.00208 & -0.00000008 & 2.26 \cdot 10^{-10} & & & \\
0.1 & 0.771887 & 0.77209587 & 0.7720957853 & 0.772095785485 & & \\
\end{array}
\]

The exact solution is \(\int_0^{0.8} \frac{\sin x}{x} \,dx \approx 0.7720957854820 \). We see that \(T_4(0.1) \) is a much better approximation than \(T_1(0.1) \).

Alternative Methods

We briefly sketch two alternative methods for approximating definite integrals. They are examples of the so called Monte-Carlo methods (they work with random numbers).

For many complex applications e.g. the modeling by Differential Equations is either not possible or too computationally intensive. A solution is the direct simulation of each process using a stochastic model. Such models are used in the areas

- Static Physics (Many Particle Physics)
- Hydrodynamics
- Meteorology
- Road Traffic
- Waiting Queue Systems

We give two simple examples of randomized methods for approximating integrals.
7.2 Numerical Differentiation

Method 1
Calculating the area under a curve (see Figure 7.1)

\[
\int_a^b f(x) \, dx \approx \frac{\text{Number of hits under the curve}}{\text{Number of hits inside the rectangle}} \cdot B \cdot H
\]

Method 2
Following the mean value theorem of integration it holds

\[
\int_a^b f(x) \, dx = (b - a) \cdot M,
\]

where \(M \) is the mean of \(f \) in the interval \([a, b]\). Now, we discretize the interval with the given points \(x_1, \ldots, x_n \) and calculate the mean of \(f \) on the given points according to

\[
A = \frac{1}{n} \sum_{i=1}^{n} f(x_i).
\]

Due to the definition of the Riemann integral, only for fine discretization \(A \approx M \) holds. Therewith \(M \) of (7.1) can be replaced by \(A \) yielding

\[
\int_a^b f(x) \, dx = \frac{b - a}{n} \sum_{i=1}^{n} f(x_i).
\]

The given points \(x_i \) should be chosen randomly. (why?)

For one-dimensional integrals both presented methods are clearly inferior to the trapezoidal rule. However, in higher dimensions, the advantages show up in the form of much shorter computing times.

7.2 Numerical Differentiation

First Derivative
- Goal: compute numerically \(f'(a) \) at some point \(x = a \)
- Idea: approximate the derivative by a finite difference quotient (see Figure 7.2):
First Derivative: Approximation Error

- How does the approximation error depend on h?

Taylor Expansion of f in $x_0 = a$:

$$f(a + h) = f(a) + f'(a)h + \frac{1}{2!}f''(a)h^2 + \frac{1}{3!}f'''(a)h^3 + \ldots$$

Division by h gives

$$\frac{f(a + h) - f(a)}{h} = f'(a) + \frac{1}{2!}f''(a)h + \frac{1}{3!}f'''(a)h^2 + \ldots = f'(a) + O(h)$$

thus proving

Theorem 7.3 Let $f : \mathbb{R} \to \mathbb{R}$ two times continuously differentiable. Then the error of the asymmetric difference decreases linearly with h, i.e.

$$\frac{f(a + h) - f(a)}{h} = f'(a) + O(h).$$

Central difference

$$f'(x) = \lim_{h \to 0 \atop h \neq 0} \frac{f(x + h) - f(x) - f(x + h) - f(x - h)}{2h} \approx \frac{f(x + h) - f(x - h)}{2h}$$

- Is the central difference asymptotically better?

Taylor Expansion of f in $x_0 = a$:

$$f(a + h) = f(a) + f'(a)h + \frac{1}{2!}f''(a)h^2 + \frac{1}{3!}f'''(a)h^3 + \ldots$$ \hspace{1cm} (7.2)

$$f(a - h) = f(a) - f'(a)h + \frac{1}{2!}f''(a)h^2 - \frac{1}{3!}f'''(a)h^3 + \ldots$$ \hspace{1cm} (7.3)
Subtracting (7.3) from (7.2) and dividing by $2h$ leads to
\[
\frac{f(a + h) - f(a - h)}{2h} = f'(a) + \frac{1}{3!} f''(a) h^2 + \frac{1}{5!} f^{(5)}(a) h^4 + \frac{1}{7!} f^{(7)}(a) h^6 + \ldots
\]

thus proving

Theorem 7.4 Let $f : \mathbb{R} \to \mathbb{R}$ three times continuously differentiable. Then the error of the symmetric difference decreases quadratically with h, i.e.
\[
\frac{f(a + h) - f(a - h)}{2h} = f'(a) + O(h^2).
\]

Example 7.2 We compute the central difference with repeated Richardson Extrapolation on the function $f(x) = 1/x$ in $x = 1$ with $h = 0.8, 0.4, 0.2, 0.1, 0.05, 0.025$:

<table>
<thead>
<tr>
<th>h</th>
<th>$F_1(h)$</th>
<th>$F_2(h)$</th>
<th>$F_3(h)$</th>
<th>$F_4(h)$</th>
<th>$F_5(h)$</th>
<th>$F_6(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>-2.777778</td>
<td>-1.90476</td>
<td>-0.661376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>-1.011010</td>
<td>-0.999579</td>
<td>-1.00008017</td>
<td>-0.999857481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>-1.002506</td>
<td>-0.999975</td>
<td>-1.00000105</td>
<td>-0.999999799</td>
<td>-1.00000036</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>-1.00625</td>
<td>-0.999998</td>
<td>-1.00000016</td>
<td>-0.9999999934</td>
<td>-1.0000000001</td>
<td>-0.9999999998</td>
</tr>
<tr>
<td>0.025</td>
<td>-1.000625</td>
<td>-0.999998</td>
<td>-1.00000016</td>
<td>-0.99999999934</td>
<td>-1.00000000001</td>
<td>-0.9999999998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Delta_1/3$</th>
<th>$\Delta_2/15$</th>
<th>$\Delta_3/63$</th>
<th>$\Delta_4/255$</th>
<th>$\Delta_5/1023$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.529101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.049603</td>
<td>-0.0220459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010522</td>
<td>-0.00005010</td>
<td>0.000022685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002532</td>
<td>-0.0000264</td>
<td>0.000001256</td>
<td>-0.000005581</td>
<td></td>
</tr>
<tr>
<td>0.000627</td>
<td>-0.0000016</td>
<td>0.00000016</td>
<td>-0.00000008</td>
<td>0.000000003</td>
</tr>
</tbody>
</table>

Second Derivative
\[
f''(x) = \lim_{h \to 0} \frac{f'(x + \frac{h}{2}) - f'(x - \frac{h}{2})}{h} = \lim_{h \to 0} \frac{f(x + h) - f(x) - f(x) + f(x - h)}{h^2} \\
\approx \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}
\]

The approximation error can easily be shown to decrease quadratically with h by adding (7.3) to (7.2):
\[
\frac{f(a + h) - 2f(a) + f(a - h)}{h^2} = + \frac{2}{2!} f''(a) + \frac{2}{4!} f^{(4)}(a) h^2 + \frac{2}{6!} f^{(6)}(a) h^4 + \ldots
\]

It can be shown ([TDB03], chapter 7), that, if we (recursively) use symmetric formulas for higher derivatives, the approximation error contains only even powers of h. As a consequence, the same Richardson extrapolation scheme can be applied.
7.3 Numerical Solution of Ordinary Differential Equations

We will use the common shorthand ODE for ordinary differential equation.

Initial Value Problems for Systems of ODEs

Given a function $f(x, y)$, we want to find a function $y(x)$ on an interval $[a, b]$ which is an approximate solution of the first order ODE

$$\frac{dy}{dx} = f(x, y) \quad \text{with the initial condition} \quad y(a) = c$$

The order of a differential equation is the degree of the highest derivative occurring in the equation. If f is linear, then there are symbolic solutions.

Many applications can be modelled by systems of first order ODEs

$$\frac{d\eta_i}{dx} = \phi_i(x, \eta_1, \ldots, \eta_s) \quad (i = 1, \ldots, s)$$

for the unknown functions $\eta_1(x), \ldots, \eta_s(x)$ with the initial conditions

$$\eta_i(a_i) = \gamma_i \quad (i = 1, \ldots, s)$$

Such a system can be written in vector form. With

$$y = (\eta_1(x), \ldots, \eta_s(x))^T$$
$$c = (\gamma_1, \ldots, \gamma_s)^T$$
$$f = (\phi_1(x), \ldots, \phi_s(x))^T$$
$$a = (a_1, \ldots, a_s)^T$$

the system reads

$$\frac{dy}{dx} = f(x, y), \quad y(a) = c.$$

Example 7.3 ODEs of higher order can be transformed into a system of first order ODEs. For the third order ODE

$$\frac{d^3 y}{dx^3} = g(x, y, dy/dx, \frac{d^2 y}{dx^2})$$

with the initial conditions

$$y(0) = \gamma_1, \quad y'(0) = \gamma_2, \quad y''(0) = \gamma_3$$

we substitute

$$\eta_1 = y, \quad \eta_2 = dy/dx, \quad \eta_3 = \frac{d^2 y}{dx^2}$$

and get

$$\frac{d\eta_1}{dx} = \eta_2, \quad \eta_1(0) = \gamma_1$$
$$\frac{d\eta_2}{dx} = \eta_3, \quad \eta_2(0) = \gamma_2$$
$$\frac{d\eta_3}{dx} = g(x, y, \eta_1, \eta_2, \eta_3), \quad \eta_3(0) = \gamma_3$$
Theorem 7.5 Any system of ODEs can be transformed into an equivalent system of ODEs with derivatives of order one only.

The Euler Method

We discretize the interval \([a, b]\) into subintervals of width \(h\) by

\[x_i = a + ih \quad (i = 0, 1, \ldots) \quad \text{and} \quad y_0 = y(a) = c \]

and we want to compute the values \(y_1, y_2, \ldots\) as an approximation for the exact values \(y(x_1), y(x_2), \ldots\). We approximate the system of ODEs by

\[\frac{dy}{dx} \approx \frac{y_{n+1} - y_n}{h} = f(x_n, y_n) \]

yielding the recursion

\[
\begin{align*}
\ y_0 &= c, \\
\ y_{n+1} &= y_n + hf(x_n, y_n), \quad (n = 0, 1, 2, \ldots)
\end{align*}
\]

Figure 7.3: Solution polygon of the Euler method.

The approximation error of the Euler method can be estimated using the Taylor expansion

\[y(x_{n+1}) = y(x_n) + y'(x_n) \cdot h + \frac{y''}{2!} h^2 + \frac{y'''}{3!} h^3 + \ldots \]

The error then is

\[\frac{y(x_{n+1}) - y(x_n)}{h} - y'(x_n) = \frac{y''}{2!} h + \frac{y'''}{3!} h^2 + \ldots \]

One can thus apply Richardson Extrapolation with \(p_k = k\).
7 Numerical Integration and Solution of Ordinary Differential Equations

<table>
<thead>
<tr>
<th>x_n</th>
<th>$y(x_n)$</th>
<th>$h = 0.1$ error</th>
<th>y_n</th>
<th>$h = 0.2$ error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.105</td>
<td>0.005</td>
<td>1.00</td>
<td>0.003</td>
</tr>
<tr>
<td>0.2</td>
<td>1.221</td>
<td>0.011</td>
<td>1.2</td>
<td>0.021</td>
</tr>
<tr>
<td>0.3</td>
<td>1.350</td>
<td>0.019</td>
<td>1.21</td>
<td>0.021</td>
</tr>
<tr>
<td>0.4</td>
<td>1.492</td>
<td>0.028</td>
<td>1.44</td>
<td>0.052</td>
</tr>
<tr>
<td>0.5</td>
<td>1.649</td>
<td>0.038</td>
<td>1.728</td>
<td>0.094</td>
</tr>
<tr>
<td>0.6</td>
<td>1.822</td>
<td>0.050</td>
<td>1.772</td>
<td>0.070</td>
</tr>
</tbody>
</table>

Figure 7.4: Results of the Euler method applied to the ODE $y' = y$ with $y(0) = 1$ for $h = 0.1$ and $h = 0.2$.

Runge-Kutta Methods

The error of the Euler method is due to the linear approximation of $y(x)$ in x_n as can be seen in Figure 7.3. This can be improved by averaging over an appropriately chosen combination of values of the function $f(x, y)$. The simplest formula of this type, the Heun Method uses a symmetric average of $f(x_n, y_n)$ and $f(x_{n+1}, y_{n+1})$ with the consequence that $(y_{n+1} - y_n)/h$ is effectively used as a symmetric approximation of dy/dx in $x_n + h/2$:

$$\frac{dy}{dx} \approx \frac{y_{n+1} - y_n}{h} = \frac{1}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n)) \right)$$

Solving this for y_{n+1} leads to the recursion scheme

$$k_1 = hf(x_n, y_n)$$
$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$
$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$
$$k_4 = hf(x_n + h, y_n + k_3)$$
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

We use the notion $y(x, h)$ for the numeric result with step width h obtained from applying the recursion scheme. We get a quadratic approximation error

$$y(x, h) = y(x) + c_4(x)h^4 + c_5(x)h^5 + \ldots$$

with the exponents $p_k = 2, 3, 4, 5, \ldots$ for Richardson extrapolation.

An even better scheme, known as fourth order Runge Kutta or classical Runge Kutta is

$$k_1 = hf(x_n, y_n)$$
$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$
$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$
$$k_4 = hf(x_n + h, y_n + k_3)$$
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

with the approximation error

$$y(x, h) = y(x) + c_4(x)h^4 + c_5(x)h^5 + \ldots$$
7.3 Numerical Solution of Ordinary Differential Equations

<table>
<thead>
<tr>
<th>x_n</th>
<th>$y(x_n)$</th>
<th>Euler method</th>
<th>Heun method</th>
<th>Runge Kutta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.10517</td>
<td>1.105</td>
<td>1.10517</td>
<td>1.10517</td>
</tr>
<tr>
<td>0.2</td>
<td>1.22140</td>
<td>1.22103</td>
<td>1.22140</td>
<td>1.22140</td>
</tr>
<tr>
<td>0.3</td>
<td>1.34986</td>
<td>1.34923</td>
<td>1.34986</td>
<td>1.34986</td>
</tr>
<tr>
<td>0.4</td>
<td>1.49182</td>
<td>1.4909</td>
<td>1.49182</td>
<td>1.49182</td>
</tr>
<tr>
<td>0.5</td>
<td>1.64872</td>
<td>1.64745</td>
<td>1.64872</td>
<td>1.64872</td>
</tr>
<tr>
<td>0.6</td>
<td>1.82212</td>
<td>1.82043</td>
<td>1.82212</td>
<td>1.82212</td>
</tr>
</tbody>
</table>

Figure 7.5: Comparison of Euler method, Heun method and Runge Kutta applied to the ODE $y' = y$ with $y(0) = 1$ and $h = 0.1$.

and $p_k = 4, 5, 6, \ldots$

Figure 7.5 shows a comparison between the three yet presented methods for solving first order initial value problems. It clearly confirms the theoretical results w.r.t. the approximation error which are:

Euler method: $O(h)$, Heun method: $O(h^2)$, Runge Kutta $O(h^4)$

Often the selection of an appropriately small step size h is critical for good results of all described methods. This can be automatized with methods that adapt the step size (see [Sch88]).

Example 7.4 We want to solve a classical predator prey system from biology. $y_1(t)$ may be a population of sheep and $y_2(t)$ a population of wolves. With no wolves the sheeps breed nicely. Breeding of the wolves increases monotonically with the number of wolves and sheep. But with no sheep, wolves will die out. The ODEs from Lotka-Volterra are [Sch88]:

\[
\begin{align*}
\dot{y}_1(t) &= \alpha y_1(t)(1 - y_2(t)) \\
\dot{y}_2(t) &= y_2(t)(y_1(t) - 1)
\end{align*}
\]

With the Runge Kutta method we can easily compute the population dynamics for this system. A sample plot is shown in Figure 7.6.

Boundary Value Problems for Second Order ODEs

As already mentioned in example 7.3, whenever a second order ODE can be written as

$$y'' = f(x, y, y'),$$

it can be transformed into a system of two first order ODEs and then be solved with the methods already described. We will now sketch ideas for a direct solution of scalar second order boundary value problems of the form

$$y'' = f(x, y, y')$$

with the boundary conditions $y(a) = \alpha, y(b) = \beta$.

We discretize the derivatives by

$$y'(x_n) \approx \frac{y_{n+1} - y_{n-1}}{2h} \quad \text{and} \quad y''(x_n) \approx \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2}$$
on the interval \([a, b]\) with \(b - a = mh\) and \(x_i = a + ih\). \(y_i\) is the approximation of \(y(x_i)\). We obtain the (typically nonlinear) system of equations

\[
\begin{align*}
y_0 &= \alpha \\
y_{n+1} - 2y_n + y_{n-1} &= h^2 f(x_n, y_n, \frac{y_{n+1} - y_{n-1}}{2h}), & (n = 1, 2, 3, \ldots, m - 1) \\
y_m &= \beta.
\end{align*}
\]

With \(f = (f_1, \ldots, f_{m-1})^T\) and

\[
f_n = f(x_n, y_n, \frac{y_{n+1} - y_{n-1}}{2h})
\]

we can write the system in matrix form

\[
Ay = h^2 f(y) - r
\]

(7.4)

with

\[
A = \begin{pmatrix}
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & -2 & 1 \\
0 & 0 & \cdots & 0 & 1 & -2
\end{pmatrix}, \quad y = \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_{m-1}
\end{pmatrix}, \quad f(y) = \begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
\vdots \\
f_{m-1}
\end{pmatrix}, \quad r = \begin{pmatrix}
\alpha \\
0 \\
0 \\
\vdots \\
\beta
\end{pmatrix}.
\]

If the differential equation is linear, this is a linear system that can be solved in linear time with the tridiagonal algorithm described in Section 6.2.1. Since we used symmetric approximation formulas for the derivatives, the approximation error is

\[
y(x, h) = y(x) + c_1(x)h^2 + c_2(x)h^4 + c_3(x)h^6 + \ldots
\]
In the nonlinear case one can use the iterative approach

\[Ay^{(k+1)} = h^2 f(y^{(k)}) - r \]

(7.5)

where \(y^{(k)} \) stands for the value of \(y \) after \(k \) iterations. As initial values one can use a linear interpolation between the two boundary values \(y_0 = y(0) = \alpha, y_m = y(b) = \beta \):

\[y^{(0)}_i = \alpha + (\beta - \alpha) \frac{i}{m}. \]

Multiplication of Equation 7.5 with \(A^{-1} \) gives

\[y^{(k+1)} = h^2 A^{-1} f(y^{(k)}) - A^{-1} r. \]

This is a fixed point iteration

\[y^{(k+1)} = F(y^{(k)}) \]

for solving the fixed point equation

\[y = F(y) \]

(7.6)

with

\[F(y) = h^2 A^{-1} f(y) - A^{-1} r. \]

A generalization of the Banach fixed point theorem from Section 5.3.2 can be applied here if \(F \) is a contraction. This means, if for any vectors \(x, y \) there is a nonnegative real number \(L < 1 \) with

\[\| F(x) - F(y) \| \leq L \| x - y \|, \]

the iteration converges to the unique solution of Equation 7.6 (or equivalently Equation 7.4).

The Cart-Pole-Problem

\[
(M + m) \ddot{x} - ml \ddot{\theta} \cos \theta + ml \dot{\theta}^2 \sin \theta = 0 \\
ml(-g \sin \theta - \ddot{x} \cos \theta + l \ddot{\theta}) = 0
\]
7.4 Linear Differential Equations with Constant Coefficients

To solve the one-dimensional first order ODE\footnote{We follow section 6.3 in [Str03]}
\[\frac{dy}{dx} = \lambda y \quad \text{with the initial value } y(0) \]
we try
\[y(x) = ae^{\lambda x} \]
and get
\[y(x) = y(0)e^{\lambda x} \]

Systems of Linear Differential Equations with Constant Coefficients

To solve
\[\frac{dy}{dx} = Ay \quad \text{with the initial value } y(0) \tag{7.7} \]
we try
\[y(x) = ue^{\lambda x} \]
Substitution leads to the Eigenvalue problem \(Au = \lambda u \)

Example

To solve
\[\frac{dy}{dx} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} y \quad \text{with } y(0) = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \tag{7.8} \]
we have to solve \(Au = \lambda u \) and get the characteristic equation
\[(1 - \lambda)(1 - \lambda) - 4 = 0 \]
with the solutions \(\lambda_1 = 3 \) and \(\lambda_2 = -1 \) and the eigenvectors
\[u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \]
The particular solutions are:
\[y_1(x) = u_1e^{\lambda_1 x} \quad \text{and} \quad y_2(x) = u_2e^{\lambda_2 x} \]
The linear combinations
\[y(x) = a_1u_1e^{\lambda_1 x} + a_2u_2e^{\lambda_2 x} \]
represent the subspace of all solutions of equation \(7.7 \).
For \(x = 0 \) we get
\[y(0) = a_1u_1 + a_2u_2 = (u_1u_2) \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}. \]
For the example (equation 7.8) this gives

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2
\end{pmatrix}
= \begin{pmatrix}
5 \\
4
\end{pmatrix}
\]

or

\[
a_1 + a_2 = 5 \\
a_1 - a_2 = 4
\]
yielding \(a_1 = 9/2\) and \(a_2 = 1/2\) and the solution to our initial value problem is

\[
y(x) = \begin{pmatrix}
9/2 \\
9/2
\end{pmatrix} e^{3x} + \begin{pmatrix}
1/2 \\
-1/2
\end{pmatrix} e^{-x}
\]

Second order Linear ODEs with Constant Coefficients

Many mechanical systems can be described by the second order linear ODE\(^2\)

\[
m\ddot{x} + b\dot{x} + kx = 0 \tag{7.9}
\]

with

\[
\ddot{x} = \frac{dx}{dt} = \text{derivative wrt. time } t
\]

\(m\ddot{x} = \text{resulting force on point mass } m \text{ (Newton’s Law)}\)

\(-b\dot{x} = \text{friction proportional to speed (damping)}\)

\(-kx = \text{elastic restoring force (linear spring)}\)

Transformation to a system of first order ODEs

\[
m\ddot{x} + b\dot{x} + kx = 0
\]

We substitute \(\dot{x} = v\) and thus \(\ddot{x} = \dot{v}\) and get the first order system

\[
\begin{align*}
\ddot{x} &= v \\
m\dot{v} + b\dot{v} + kx &= 0
\end{align*}
\]

or

\[
\begin{align*}
\dot{x} &= v \\
m\dot{v} &= -kx - bv
\end{align*}
\]

In matrix form:

\[
\begin{pmatrix}
\dot{x} \\
\dot{v}
\end{pmatrix}
= \begin{pmatrix}
0 & 1 \\
-\alpha & -\beta
\end{pmatrix}
\begin{pmatrix}
x \\
v
\end{pmatrix}
\tag{7.10}
\]

with \(\alpha = \frac{k}{m}\) and \(\beta = \frac{b}{m}\).

Eigenvalue problem:

\[
\begin{vmatrix}
-\lambda & 1 \\
-\alpha & -\beta - \lambda
\end{vmatrix} = 0
\]

\(^2\)Figure from http://en.wikipedia.org/wiki/File:Mass-Spring-Damper.png
Characteristic equation:
\[-\lambda(-\beta - \lambda) + \alpha = \lambda^2 + \beta\lambda + \alpha = 0\]
with the solutions
\[\lambda_{1,2} = -\frac{\beta}{2} \pm \sqrt{\frac{\beta^2}{4} - \alpha}.\]
The corresponding eigenvectors are
\[u_1 = \left(\begin{array}{c} 1 \\ \lambda_1 \end{array} \right) \quad \text{and} \quad u_2 = \left(\begin{array}{c} 1 \\ \lambda_2 \end{array} \right).\]
The solutions for the ODE system (7.10) are
\[
\begin{pmatrix} x \\ v \end{pmatrix} = a_1 u_1 e^{\lambda_1 t} + a_2 u_2 e^{\lambda_2 t} = a_1 \left(\begin{array}{c} 1 \\ \lambda_1 \end{array} \right) e^{\lambda_1 t} + a_2 \left(\begin{array}{c} 1 \\ \lambda_2 \end{array} \right) e^{\lambda_2 t}
\]
We only look at the \(x \)-component:
\[x(t) = a_1 e^{\lambda_1 t} + a_2 e^{\lambda_2 t}\]
Eigenvalues may be complex: \(\lambda = r + i\omega \). Then
\[e^{\lambda t} = e^{rt+i\omega t} = e^{rt} \cdot e^{i\omega t} = e^{rt} \cdot (\cos\omega t + i\sin\omega t)\]
Since
\[|e^{i\omega t}| = \sqrt{(\cos^2\omega t + \sin^2\omega t)} = 1,
\]
the real factor \(e^{rt} \) determines if the solution is stable.

Definition 7.1 We call a matrix \(A \) stable if all eigenvalues have negative real parts.

The complex part \(\cos\omega t + i\sin\omega t \) produces oscillations.
Solution is exponential only, if the eigenvalues are real, i.e. if
\[
\frac{\beta^2}{4} - \alpha > 0.
\]
For \(\alpha > 0 \) and \(\beta > 0 \) this means \(\beta > 2\sqrt{\alpha} \) or \(b > 2\sqrt{km} \).
With \(\xi = \frac{b}{2\sqrt{km}} \) we get the solution diagram\(^3\)

\(^3\)Figure from http://en.wikipedia.org/wiki/Harmonic_oscillator
In 2-dimensional x, v-space we get the solutions

Plot of $x(t), v(t)$ (left) and the x, v phase diagram for $\alpha = 1, \beta = 0$ (right).

Plot of $x(t), v(t)$ (left) and the x, v phase diagram for $\alpha = 0.5, \beta = 0.1$ (right).

Back to nonlinear ODEs

We consider the following system of two nonlinear ODEs:

\[
\begin{align*}
\dot{y}_1 &= \alpha y_1 - y_2 - y_1(y_1^2 + y_2^2) \\
\dot{y}_2 &= y_1 + \alpha y_2 - y_2(y_1^2 + y_2^2)
\end{align*}
\]

Plot of $y_1(t), y_2(t)$ (left) and the y_1, y_2 phase diagram for $\alpha = -0.1$ (right).

Hopf Bifurcation
$y_1(t), y_2(t)$ (left) and the y_1, y_2 phase diagram for $\alpha = 0.2$ (right).

Hopf Bifurcation

Same setting ($\alpha = 0.2$), but different initial values.

Hopf Bifurcation, Properties

- Limit cycle is a *stable attractor*.
- Supercritical Hopf bifurcation.
- $\alpha < 0$: stable dynamics (converges to steady point).
- $\alpha \geq 0$: unstable dynamics.
- First Lyapunov coefficient is negative.

Definition 7.2 The appearance or the disappearance of a periodic orbit through a local change in the stability properties of a steady point is known as *Hopf bifurcation*.

4. www.scholarpedia.org/article/Andronov-Hopf_bifurcation
Unstable Attractor

We slightly modify the system of ODEs:

\[
\begin{align*}
\dot{y}_1 &= \alpha y_1 - y_2 + y_1(y_1^2 + y_2^2) \\
\dot{y}_2 &= y_1 + \alpha y_2 + y_2(y_1^2 + y_2^2)
\end{align*}
\]

\[
\alpha = -0.2 \text{ and } y^T(0) = (0, 0.447).
\]

\[
\alpha = -0.2 \text{ and } y^T(0) = (0, 0.448).
\]

Unstable Attractor, Properties

- Limit cycle is an *unstable attractor*.
- Subcritical Hopf bifurcation.
- \(\alpha < 0 \): the origin is a stable steady point.
- \(\alpha \geq 0 \): unstable dynamics (divergence).
- First Lyapunov coefficient is positive.

The Lorenz Attractor\(^6\)

\(^6\)en.wikipedia.org/wiki/Lorenz_attractor
\[\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= x(\rho - z) - y \\
\dot{z} &= xy - \beta z
\end{align*} \]

- Simple model of atmospheric convection.
- Chaotic attractor.

The Logistic Equation

Similar chaotic dynamics as in the Lorenz attractor can be observed in the following discrete population model:

- Reproduction proportional to \(q_r q_v X_n \).
- Animals die proportional to \(q_d (C - X_n) \).
- \(C \) = capacity of the habitat.

\[X_{n+1} = q_r q_v X_n (C - X_n). \]

Simplification \((C = 1)\):

\[x_{n+1} = r x_n (1 - x_n). \]
The Logistic Equation, Values

\[
\begin{array}{c|c|c}
\text{r} = 3.2000: & 0.1000 & 0.31500 \\
0.10000 & 0.75521 & 0.64703 \\
0.28800 & 0.65618 & 0.79933 \\
0.54450 & 0.56749 & 0.84721 \\
0.54542 & ... & ...
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{r} = 3.5000: & 0.1000 & 0.50089 \\
0.54545 & 0.51305 & 0.87500 \\
0.79946 & 0.38282 & 0.82694 \\
0.51304 & 0.50088 & 0.87500 \\
0.51304 & 0.38282 & 0.82694
\end{array}
\]

The Feigenbaum Diagram\(^7\)

In the following bifurcation diagram we see the limit values drawn over the parameter value \(r \):

\(^7\)de.wikipedia.org/wiki/Logistische_Gleichung
The End

1. Thank you for attending the lectures!
2. Thank you for working hard on the exercises!
3. I wish you fun with Mathematics, with the exercises and with ...
4. I wish you all the best for the exam!!!

7.5 Exercises

7.5.1 Numerical Integration and Differentiation

Exercise 7.1 Let $h = x_i - x_{i-1}$. Calculate the integral $\int_{x_{i-1}}^{x_i} (x - x_{i-1})(x - x_i) \, dx$ using the substitution $x = x_{i-1} + ht$ with the new variable t.

Exercise 7.2 Write a program for the numerical approximate computation of the integral of a function f in the interval $[a, b]$.

a) Write a function T for the computation of the integral with the trapezoidal rule on an equidistant grid with n equal sub intervals.

b) Apply the function T with n and $2n$ sub intervals to increase the accuracy with Richardson-extrapolation.
c) Apply your functions to \(\int_0^1 e^{-x^2} \, dx \) and produce a table of the approximation error depending on the step size \(h \) (\(1/20 \leq h \leq 1 \)).

d) Show using the above table that the error decreases quadratically for \(h \to 0 \).

* Exercise 7.3

a) Compute the area of a unit circle using both presented Monte-Carlo methods (naive and mean of function values) to an accuracy of at least \(10^{-3} \).

b) Produce for both methods a table of the deviations of the estimated value depending on the number of trials (random number pairs) and draw this function. What can you say about the convergence of this method?

c) Compute the volume of four dimensional unit sphere to a relative accuracy of \(10^{-3} \). How much more running time do you need?

Exercise 7.4

a) Compute the first derivative of the function \(\cos x/x \) in \(x = 2 \) with the symmetric difference formula and \(h = 0.1 \).

\[\begin{array}{cc}
0.5 & -3.75 \\
0.75 & -1.36607 \\
1.0 & 0.0 \\
1.25 & 0.729167 \\
1.5 & 1.05 \\
1.75 & 1.10795 \\
2.0 & 1.0 \\
2.25 & 0.793269 \\
2.5 & 0.535714 \\
2.75 & 0.2625 \\
3.0 & 0.0 \\
\end{array} \]

b) Apply Richardson extrapolation to compute \(F_4(h) \).

c) Compare the error of \(F_4(h) \) with the theoretical estimate given in Theorem 7.2.

d) Use the table of function values of the function \(f \) given beside to approximate the derivative \(f'(x) \). Apply repeated Richardson extrapolation to get \(F_2(h), F_3(h) \) and \(F_4(h) \). Plot the resulting functions.

\[\begin{array}{cc}
0.5 & -3.75 \\
0.75 & -1.36607 \\
1.0 & 0.0 \\
1.25 & 0.729167 \\
1.5 & 1.05 \\
1.75 & 1.10795 \\
2.0 & 1.0 \\
2.25 & 0.793269 \\
2.5 & 0.535714 \\
2.75 & 0.2625 \\
3.0 & 0.0 \\
\end{array} \]

7.5.2 Differential Equations

Exercise 7.5

a) Write programs that implement the Euler-, Heun- and Runge Kutta methods for solving first order initial value problems.

b) Implement the Richardson extrapolation scheme for these methods.

Exercise 7.6 The initial value problem

\[\frac{dy}{dx} = \sin(xy) \quad y_0 = y(0) = 1 \]

is to be solved numerically for \(x \in [0, 10] \).

a) Compare the Euler-, Heun- and Runge Kutta methods on this example. Use \(h = 0.1 \).

b) Apply Richardson extrapolation to improve the results in \(x = 5 \) for all methods. (attention: use the correct \(p_k \) for each method.)

Exercise 7.7 Apply the Runge Kutta method to the predator-prey example 7.4 and experiment with the parameter \(\alpha \) and the initial values. Try to explain the population results.
biologically.

Exercise 7.8 Use Runge Kutta to solve the initial value problem

\[
\frac{dy}{dx} = x \sin(xy) \quad y_0 = y(0) = 1
\]

for \(x \in [0, 20] \). Report about problems and possible solutions.

Exercise 7.9 The following table shows the differences between the approximations computed with Richardson extrapolation for some numeric algorithm. Determine from the table the convergence order of the algorithm for \(h \to 0 \) and all the exponents \(p_i \) in the Taylor expansion for \(F(h) \). (Hint: These differences are an approximation of the error on the respective approximation level.)

<table>
<thead>
<tr>
<th>(h)</th>
<th>(F(h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.075433</td>
</tr>
<tr>
<td>0.5</td>
<td>0.018304 0.0001479</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.004542 9.106 \cdot 10^{-6} -3.492 \cdot 10^{-8}</td>
</tr>
<tr>
<td>0.125</td>
<td>-0.001133 5.670 \cdot 10^{-7} -5.409 \cdot 10^{-10} 1.208 \cdot 10^{-12}</td>
</tr>
<tr>
<td>0.0625</td>
<td>-0.000283 3.540 \cdot 10^{-8} -8.433 \cdot 10^{-12} 4.691 \cdot 10^{-15} -6.847 \cdot 10^{-18}</td>
</tr>
</tbody>
</table>

Exercise 7.10 (challenging)

The dynamics of the inverted pendulum – also called cart pole – system as shown beside can be described by the following two differential equations of second order. Here \(\dot{x} \), \(\ddot{x} \), etc. are the first and second derivatives wrt. the time \(t \). A derivation of these equations can be found on Wikipedia (not required here).

\[
(M + m) \ddot{x} - ml \ddot{\theta} \cos \theta + ml \dot{\theta}^2 \sin \theta = 0 \tag{7.11}
\]

\[
ml(-g \sin \theta - \ddot{x} \cos \theta + \dot{\theta}) = 0 \tag{7.12}
\]

a) Use the substitution \(y_1 = x, y_2 = \dot{x}, y_3 = \theta, y_4 = \dot{\theta} \) to obtain a system of 4 first order ODEs of the form \(\dot{y} = f(y) \). (Hint: make sure, the right hand sides of the differential equations contain no derivatives!)

b) Apply the Runge Kutta method to solve the system for \(g = 9.81, m = 1, M = 1 \) with the initial condition \(y_1(0) = 0, y_2(0) = 0, y_3(0) = 0.01, y_4(0) = 0 \).

c) Plot the functions \(y_1(t), y_2(t), y_3(t), y_4(t) \) and try to understand them.

d) Experiment with other initial conditions and other masses, e.g. \(m = 1, M = 100000 \) or \(M = 1, m = 100000 \).

Exercise 7.11 Prove that, if \(y_1 \) and \(y_2 \) are solutions of the ODE \(y' = \lambda y \), then any linear combination of \(y_1 \) and \(y_2 \) is also a solution.

Exercise 7.12 Prove that the eigenvectors of the matrix

\[
\begin{pmatrix}
0 & 1 \\
-\alpha & -\beta
\end{pmatrix}
\]
from equation 7.10 with the eigenvalues λ_1 and λ_2 are $(1, \lambda_1)^T$ and $(1, \lambda_2)^T$.

Exercise 7.13

a) Solve the initial value problem $m \ddot{x} + b \dot{x} + kx = 0$ with $x(0) = 0$ and $\dot{x}(0) = -10 \text{m/s}$ for the parameters: $m = 10 \text{kg}$, $b = 2 \text{kg/s}$, $k = 1 \text{kg/s}^2$. Plot the resulting function $x(t)$.

b) The general solution involves a complex component $i \sin \omega t$. Does it make sense to have a complex sine-wave as solution for an ODE with real coefficients and real initial conditions? What is the natural solution for this problem?

Exercise 7.14 Linearize the Lotka-Volterra ODEs and show that this no good model for a predator prey system. To do this:

a) Calculate the Jacobian matrix of the right hand side of the ODEs at $y(0)$ and set up the linearized ODEs.

b) Calculate the eigenvalues of the Jacobian and describe the solutions of the linearized system.

Exercise 7.15 Download the Octave/Matlab code for the Lorenz attractor from [http: //en.wikipedia.org/wiki/Lorenz_attractor](http://en.wikipedia.org/wiki/Lorenz_attractor). Modify the code to dynamically follow a trajectory and observe the chaotic dynamics of the system.
References

Recommended Text Books

Other References

7.5 Exercises

